# 5 Exemplos de Aplicação

# 5.1. Introdução

Neste capítulo são apresentados seis exemplos elaborados de forma que todas as opções de análises implementadas no programa de confiabilidade de estruturas, descritas no item 4.2.2. sejam utilizadas.

A seguir, é apresentado um resumo do que é realizado nos exemplos.

Do primeiro ao quarto exemplo avalia-se a confiabilidade da seção mais solicitada de uma viga de concreto armado (Figura 5.1a) para os modos de colapso ocasionados pela força cortante. Os modelos probabilísticos das variáveis consideradas aleatórias são definidos no primeiro exemplo. No segundo exemplo, o modelo probabilístico das cargas acidentais é variado. No terceiro, são incluídos os fatores de modelagem como variáveis aleatórias. No quarto, as propriedades geométricas são alteradas.

No quinto exemplo é estudada a seção mais solicitada de uma viga de concreto armado reforçada à força cortante com CFRP (Figura 5.1b), devido aos acréscimos de cargas acidentais, para os modos de colapso ocasionados pela força cortante. É efetuado o dimensionamento da taxa geométrica de reforço pelo projeto corrente e pelo projeto baseado em confiabilidade e é avaliada a confiabilidade da seção para valores fornecidos de taxa geométrica de reforço.

No sexto exemplo é efetuado o dimensionamento da taxa geométrica de reforço pelo projeto baseado em confiabilidade, sendo variado o valor da resistência à compressão do concreto.

Para desenvolvimento dos exemplos algumas decisões foram tomadas:

Foi considerado que o dimensionamento da armadura transversal tenha sido efetuado, para o estado limite último, a partir do modelo de cálculo I da NBR 6118 (2003), com o valor da intensidade da força cortante solicitante de cálculo igual ao valor da resistência de cálculo:

$$V_{Sd} = V_{Rd3} = V_c + V_{sw} \tag{5.1}$$

onde  $V_c = 59,68 \ kN$ ,  $V_{sw} = 73,19 \ kN$  e  $V_{Sd} = V_{Rd3} = 132,87 \ kN$ .





Adotou-se a força cortante solicitante constituída por duas parcelas de cargas, a primeira proveniente de cargas permanentes e a segunda de cargas acidentais.

$$V_{gk} = \frac{k_g V_{Sd}}{\gamma_g}$$
(5.2)

$$V_{qk} = \frac{k_q V_{Sd}}{\gamma_q}$$
(5.3)

com  $\gamma_g = \gamma_q = 1,4$ .

Foram supostas duas situações distintas para a natureza da carga total, com predominância de parcela permanente ou acidental, de acordo com as proporções abaixo.

| Caso | Proporções de carga permanente e acidental em relação à carga total |                    |  |  |  |
|------|---------------------------------------------------------------------|--------------------|--|--|--|
|      | k <sub>g</sub> (%)                                                  | k <sub>q</sub> (%) |  |  |  |
| 1    | 75                                                                  | 25                 |  |  |  |
| 2    | 25                                                                  | 75                 |  |  |  |

Tabela 5.1 – Proporções de carga permanente e acidental em relação à carga total.

# 5.2. Primeiro Exemplo

Este exemplo tem como objetivo avaliar a confiabilidade da seção mais solicitada de uma viga de concreto armado (Figura 5.1a) para os modos de colapso ocasionados pela força cortante. É utilizada a opção implementada no programa de confiabilidade de estruturas para análise de seções de concreto armado (letra (a) do item 4.2.2.).

Os resultados obtidos são comparados com os resultados fornecidos pelo Programa Comrel Versão 8.00 para aferição do programa implementado.

### 5.2.1.

# Modelos Probabilísticos das Resistências e das Solicitações

Neste exemplo são consideradas como variáveis aleatórias: a resistência à compressão do concreto ( $f_c$ ), a resistência à tração do aço ( $f_{yw}$ ), a parcela da força cortante proveniente das cargas permanentes ( $V_g$ ) e a parcela da força cortante proveniente das cargas acidentais ( $V_g$ ).

Os modelos probabilísticos adotados para as variáveis são sintetizados na tabela a seguir e definidos adiante. Estes modelos são utilizados também nos demais exemplos, exceto quando há alguma modificação relatada no exemplo.

| Tabela 5.2 – Modelos probabilísticos das resistências do concreto e do aço e das |
|----------------------------------------------------------------------------------|
| solicitações permanente e acidental.                                             |

| Caso  | Variável<br>Aleatória | Valor<br>Característico | Média | Desvio<br>Padrão | Coeficiente<br>de Variação<br>(%) | Distribuição |
|-------|-----------------------|-------------------------|-------|------------------|-----------------------------------|--------------|
| 1 e 2 | f <sub>c</sub> (MPa)  | 20                      | 26,6  | 4                | 15,04                             | Lognormal    |
| 1 e 2 | f <sub>yw</sub> (MPa) | 500                     | 560   | 30               | 5,36                              | Lognormal    |
| 4     | V <sub>g</sub> (kN)   | 71,18                   | 71,18 | 7,12             | 10                                | Normal       |
| 1     | V <sub>q (kN)</sub>   | 23,73                   | 23,73 | 5,93             | 25                                | Gumbel       |
| 0     | V <sub>g</sub> (kN)   | 23,73                   | 23,73 | 2,37             | 10                                | Normal       |
| 2     | V <sub>q</sub> (kN)   | 71,18                   | 71,18 | 17,79            | 25                                | Gumbel       |

Definição dos modelos probabilísticos das variáveis aleatórias:

1) <u>Resistência à compressão do concreto</u>

O modelo probabilístico adotado para a resistência à compressão do concreto se baseia nas recomendações da NBR 8681 (2003), da NBR 12655 (1996) e do JCSS (2001).

Segundo a NBR 8681 (2003), a resistência característica inferior  $f_{k,inf}$  dos materiais é admitida como sendo o valor que tem apenas 5% de probabilidade de não ser atingido pelos elementos de um dado lote de material. O valor de  $f_{k,inf}$  é sempre menor do que a resistência média  $f_m$ , dada pela média aritmética das resistências dos elementos que compõe o lote considerado de material.

A NBR 12655 (1996) fornece para o cálculo da resistência média do concreto à compressão  $f_{cj}$ , prevista para a idade de j dias, a seguinte expressão:

$$f_{cj} = f_{ck} + 1,65 \, S_d \tag{5.4}$$

onde:

S<sub>d</sub> - é o desvio padrão da dosagem, tabelado na norma de acordo com a condição de preparo do concreto (Tabela 5.3).

Tabela 5.3 – Desvio Padrão a ser adotado em função da condição de preparo do concreto.

| Condição de Preparo | Desvio Padrão MPa |  |  |
|---------------------|-------------------|--|--|
| Воа                 | 4,0               |  |  |
| Média               | 5,5               |  |  |
| Ruim                | 7,0               |  |  |

O valor constante (1,65) da equação 5.4 é obtido pela inversa da função de distribuição cumulativa normal padrão (média zero e desvio padrão unitário) para uma probabilidade de 5%, o que representa  $P(f_c \le f_{ck}) = 0.05$ .

O JCSS (2001) sugere que seja adotada a distribuição Lognormal.

2)

Resistência à tração da armadura de aço

O modelo probabilístico adotado para a resistência à tração do aço se baseia nas recomendações do JCSS (2001) que fornece para o cálculo da média da resistência de escoamento do aço a seguinte expressão:

$$\mu_{f_{yw}} = S_{nom} + 2\sigma_{f_{yw}} \tag{5.5}$$

onde:

 $S_{nom}$  - valor característico da resistência de escoamento  $f_{vwk}$ , em MPa;

 $\sigma_{f_{yw}}$  - desvio padrão da resistência de escoamento do aço, sendo recomendado pelo JCSS (2001) o valor de 30 *MPa*.

É sugerido adotar distribuição Lognormal.

### 3) Força cortante proveniente da carga permanente

Considera-se como carga permanente o peso próprio da estrutura e os elementos não estruturais conectados permanentemente à estrutura.

O modelo probabilístico adotado para a carga permanente é baseado em ELLINGWOOD et alii (1980), que propõe CoV = 0,10 e distribuição Normal, e na NBR 8681 (2003), onde é mencionado que para as cargas permanentes o valor característico é igual ao valor médio.

Considera-se que o modelo probabilístico adotado para a força cortante proveniente da carga permanente é o mesmo adotado para a carga permanente.

### 4) Força cortante proveniente da carga acidental

A carga acidental é dividida em duas categorias:

- a) contínua: constituída do peso dos móveis, dos equipamentos, das pessoas e de seus pertences.
- b) momentânea: constituída do peso das pessoas e de seus pertences que pode existir durante um evento não usual como numa emergência, quando todos se posicionam numa mesma sala, ou devido ao armazenamento de móveis numa determinada área.

Segundo NOWAK e COLLINS (2000), os parâmetros estatísticos das duas categorias de carga acidental dependem da área de influência, sendo, quanto maior a área de contribuição para a carga acidental menor é o valor nominal da carga. O valor do coeficiente de variação também diminui com o aumento da área de influência.

A carga acidental máxima equivalente, considerada para um período de retorno de 50 a 100 anos, é resultante da combinação da carga acidental contínua com a carga acidental momentânea e os parâmetros probabilísticos dependem da variação temporal da carga acidental momentânea, da duração da carga acidental contínua e do tempo de retorno considerado.

O modelo probabilístico adotado para a carga acidental máxima equivalente, para um período de retorno de 50 anos, é baseado em

ELLINGWOOD et alii (1980), que propõe CoV = 0,25; distribuição de valores extremos máximos do tipo I (Gumbel) e valor médio igual ao valor característico.

Considera-se que o modelo probabilístico adotado para força cortante proveniente da carga acidental é o mesmo adotado para a carga acidental.

### 5.2.2. Resultados

Pela Tabela 5.4 constata-se que os valores obtidos pelos dois programas são muito próximos e que a seção de concreto armado analisada tem maior probabilidade de falhar devido à ruína de sua alma por tração diagonal, coincidindo com a filosofia adotada pela NBR 6118 (2003).

Observa-se que os índices de confiabilidade diminuem com o aumento da proporção de cargas acidentais, sendo que o valor da carga total é mantido.

Comparando os valores obtidos de índices de confiabilidade ( $\beta_2 \ e \ \beta_3$ ) com o valor de  $\beta_r = 3.8$ , sugerido pelo Eurocode ENV (1990), verifica-se que para o Caso 1 os valores de  $\beta_2 \ e \ \beta_3$  são exagerados, porém para o Caso 2, o valor de  $\beta_3$  (referente à tração diagonal) é menor do que  $\beta_r = 3.8$ .

Esta diferença de nível de confiabilidade ocorre porque o método semiprobabilístico utilizado na NBR 6118 (2003) adota coeficientes de segurança iguais para cargas permanentes e acidentais, não levando em consideração a maior variabilidade das cargas acidentais. Na análise de confiabilidade de estruturas a diferença de variabilidade é considerada através da adoção de valores diferentes de coeficientes de variação para cargas permanentes e acidentais e, também, distintas distribuições de probabilidade.

Tabela 5.4 – Índices de confiabilidade e probabilidades de falha do primeiro exemplo para os modos de colapso.

| Proporções | orções         | Programa       |           |                   |           |                 |                    |                 |           |                 |
|------------|----------------|----------------|-----------|-------------------|-----------|-----------------|--------------------|-----------------|-----------|-----------------|
| Caso       | das car        | gas (%)        |           | Implementado em C |           |                 | Comercial – Comrel |                 |           |                 |
|            | k <sub>g</sub> | k <sub>q</sub> | $\beta_2$ | p <sub>f2</sub>   | $\beta_3$ | p <sub>f3</sub> | $\beta_2$          | p <sub>f2</sub> | $\beta_3$ | p <sub>f3</sub> |
| 1          | 75             | 25             | 9,72      | -                 | 5,66      | 7,44E-9         | 9,72               | 1,26E-22        | 5,66      | 7,47E-9         |
| 2          | 25             | 75             | 6,74      | 7,68E-12          | 3,27      | 5,41E-4         | 6,74               | 7,70E-12        | 3,27      | 5,36E-4         |

A Tabela 5.5 mostra que os valores do índice de confiabilidade equivalente e da probabilidade de falha, considerando a formulação de sistemas em série, assumem os mesmos valores obtidos para o modo de falha referente à tração diagonal (contidos na Tabela 5.4).

Os valores do coeficiente de correlação entre as duas funções de falha (Tabela 5.5) indicam que os modos de ruptura são dependentes entre si, apresentando dependência maior para o Caso 2.

Tabela 5.5 – Índice de confiabilidade equivalente e probabilidade de falha do primeiro exemplo para sistema em série.

| Caso | Ρ <sub>ik</sub> | $eta_{e,s	ext{e}r	ext{i}e}$ | p <sub>f,série</sub> |  |
|------|-----------------|-----------------------------|----------------------|--|
| 1    | 0,88            | 5,66                        | 7,44E-9              |  |
| 2    | 0,93            | 3,27                        | 5,41E-4              |  |

Quanto aos fatores de importância observa-se, pela Tabela 5.6, que para a função de estado que avalia o esmagamento das bielas as variáveis aleatórias  $f_c \, e \, V_q$  apresentam fatores de importância próximos no Caso 1, porém  $V_q$  passa a ter uma importância bem maior no Caso 2, devido à proporção de cargas acidentais ser maior. Na função de estado que avalia a tração diagonal somente o fator de importância de  $V_q$  é significativo, isto pode estar relacionado com o fato de que o valor do coeficiente de variação adotado para  $V_q$  é bem maior do que os adotados para as demais variáveis.

Tabela 5.6 – Fatores de importância das variáveis aleatórias do primeiro exemplo para os modos de colapso.

|             |           | Fatores de importância (%) |                 |          |      |                 |                 |       |       |  |
|-------------|-----------|----------------------------|-----------------|----------|------|-----------------|-----------------|-------|-------|--|
| Caso Índice | Índice    | Pro                        | grama Ir        | nplement | ado  | Programa Comrel |                 |       |       |  |
|             |           | f <sub>c</sub>             | f <sub>yw</sub> | $V_g$    | Vq   | f <sub>c</sub>  | f <sub>yw</sub> | $V_g$ | $V_q$ |  |
| 1           | $\beta_2$ | 48,7                       | -               | 2,4      | 48,9 | 49,0            | -               | 2,4   | 48,6  |  |
| 1           | $\beta_3$ | 9,6                        | 3,1             | 6,9      | 80,4 | 9,6             | 3,5             | 6,9   | 80,0  |  |
| 0           | $\beta_2$ | 26,6                       | -               | 0,1      | 73,3 | 26,7            | -               | 0,1   | 73,2  |  |
| 2           | $\beta_3$ | 3,7                        | 1,0             | 0,2      | 95,1 | 3,6             | 1,1             | 0,2   | 95,1  |  |

# 5.3. Segundo Exemplo

Este exemplo tem como objetivo analisar o elevado fator de importância obtido no exemplo anterior para a variável aleatória  $V_{\alpha}$ .

O exemplo anterior é repetido considerando os mesmos modelos probabilísticos, porém alterando o valor do coeficiente de variação das cargas acidentais de 25% para 10%, passando a ter um valor igual ao adotado para as cargas permanentes. Posteriormente o valor do coeficiente de variação da variável  $V_q$  é variado, assumindo valores entre 10% a 30%, e finalmente a confiabilidade é avaliada adotando distribuição Normal e coeficiente de variação igual a 10% para a variável aleatória  $V_q$ .

### 5.3.1. Resultados

# Adotando um coeficiente de variação menor para as cargas acidentais a seção de concreto armado passa a apresentar uma confiabilidade maior (Tabela 5.7), os valores dos índices de confiabilidade aumentam e valores de probabilidades de falha diminuem, comparado com os valores obtidos no primeiro exemplo (Tabela 5.4).

A partir da Tabela 5.7 observa-se que com o aumento de proporção de cargas acidentais (Caso 2) os valores dos índices de confiabilidade diminuem, conforme constatado, também, no primeiro exemplo. Isto indica que adotar distribuição Gumbel (distribuição de valores extremos máximos) para as cargas acidentais influencia muito o resultado, mostrando que uma variável com o comportamento representado pela distribuição Gumbel torna-se determinante na avaliação de falha da estrutura.

| Tabela 5.7 – Íi | ndices de | e confiabilidade | e probabilidades | de falha do | segundo |
|-----------------|-----------|------------------|------------------|-------------|---------|
| exer            | nplo para | a os modos de c  | olapso, com Cov  | ∕_Vq = 10%. |         |

|      | Propo          | orções         | Índices de confiabilidade |          |           |                 |  |
|------|----------------|----------------|---------------------------|----------|-----------|-----------------|--|
| Caso | das cargas (%) |                | e probabilidades de falha |          |           |                 |  |
|      | k <sub>g</sub> | k <sub>q</sub> | $\beta_2$                 | $p_{f2}$ | $\beta_3$ | p <sub>f3</sub> |  |
| 1    | 75             | 25             | 11,41                     | -        | 7,96      | 8,88E-16        |  |
| 2    | 25             | 75             | 9,32                      | -        | 5,34      | 4,74E-8         |  |

A Tabela 5.8 mostra que os valores do índice de confiabilidade equivalente e da probabilidade de falha, considerando a formulação de sistemas em série, continuam assumindo os mesmos valores obtidos para o modo de falha referente à tração diagonal (contidos na Tabela 5.7).

Tabela 5.8 – Índice de confiabilidade e probabilidade de falha do segundo exemplo para sistema em série, com CoV\_Vq = 10%.

| Caso | Ρ <sub>ik</sub> | $eta_{	extbf{e},	extbf{s}\acute{	extbf{e}}i	extbf{e}}$ | p <sub>f,série</sub> |
|------|-----------------|--------------------------------------------------------|----------------------|
| 1    | 0,78            | 7,96                                                   | 8,88E-16             |
| 2    | 0,90            | 5,34                                                   | 4,74E-8              |

Os valores dos fatores de importância obtidos para as variáveis aleatórias (Tabela 5.9) deixam claro a elevada influência da distribuição Gumbel, adotada para as cargas acidentais, pois mesmo no Caso 1 onde 75% da carga total é de natureza permanente a variável  $V_q$  apresenta, para a função de estado que avalia a tração diagonal, um fator de importância bem maior, chegando a ser aproximadamente duas vezes maior do que o apresentado para a variável  $V_q$ .

Tabela 5.9 – Fatores de importância das variáveis aleatórias do segundo exemplo para os modos de colapso, com  $CoV_Vq = 10\%$ .

| Caso | Í. d'a a  | Fatores de importância (%) |                 |      |      |  |  |  |
|------|-----------|----------------------------|-----------------|------|------|--|--|--|
|      | Indice    | f <sub>c</sub>             | f <sub>yw</sub> | Vg   | Vq   |  |  |  |
| 1    | $\beta_2$ | 79,5                       | -               | 10,2 | 10,3 |  |  |  |
|      | $\beta_3$ | 21,0                       | 8,8             | 22,1 | 48,1 |  |  |  |
| 0    | $\beta_2$ | 43,7                       | -               | 0,2  | 56,1 |  |  |  |
| 2    | $\beta_3$ | 7,9                        | 2,5             | 0,6  | 89,0 |  |  |  |

Na Figura 5.2 é verificada a influência do valor do coeficiente de variação adotado para  $V_q$  nos valores dos índices de confiabilidade ( $\beta_2 \in \beta_3$ ).



Figura 5.2 – Gráfico coeficiente de variação de  $V_q$  x índices de confiabilidade: (a) Caso 1, (b) Caso 2.

A Figura 5.3 apresenta gráficos que relacionam fatores de importância das variáveis aleatórias com coeficientes de variação adotados para a variável aleatória  $V_q$  para o Caso 1, onde 75% da carga total é de natureza permanente.



Figura 5.3 – Gráfico coeficiente de variação de V<sub>q</sub> x fatores de importância das variáveis aleatórias (caso 1): (a) para função de estado que avalia o esmagamento das bielas, (b) para função de estado que avalia a tração diagonal.

Se fosse adotada a distribuição Normal e coeficiente de variação igual a 10% para as duas parcelas de cargas (permanentes e acidentais) os resultados dos índices de confiabilidade obtidos para os Casos 1 e 2 seriam iguais ( $\beta_2 = 11,49$  e  $\beta_3 = 8,54$ ) e a importância das variáveis aleatórias  $V_g$  e  $V_q$  se revezariam de acordo com a proporção adotada de carga permanente e acidental (Tabela 5.10), confirmando que o elevado valor do fator de importância da variável aleatória  $V_q$ , no primeiro exemplo, é principalmente devido a se adotar distribuição Gumbel para as cargas acidentais. Tabela 5.10 – Fatores de importância das variáveis aleatórias do segundo exemplo para os modos de colapso, supondo distribuição Normal e CoV = 10% para cargas permanentes e acidentais.

| Caso | í.        | Fatores de importância (%) |                 |      |      |  |  |  |
|------|-----------|----------------------------|-----------------|------|------|--|--|--|
|      | Indice    | f <sub>c</sub>             | f <sub>yw</sub> | Vg   | Vq   |  |  |  |
| 1    | $\beta_2$ | 86,0                       | -               | 12,6 | 1,4  |  |  |  |
|      | $\beta_3$ | 33,4                       | 16,1            | 45,4 | 5,1  |  |  |  |
| 2    | $\beta_2$ | 86,0                       | -               | 1,4  | 12,6 |  |  |  |
|      | $\beta_3$ | 33,4                       | 16,1            | 5,1  | 45,4 |  |  |  |

# 5.4. Terceiro Exemplo

Este exemplo tem como objetivo acrescentar os fatores de modelagem como variáveis aleatórias.

O primeiro exemplo é repetido considerando os mesmos modelos probabilísticos, porém com o acréscimo os modelos probabilísticos referentes aos fatores de modelagem, definidos adiante.

### 5.4.1.

# Considerações e Modelos Probabilísticos dos Fatores de Modelagem

Os modelos de cálculo são de natureza numérica, analítica ou empírica. Na maioria das vezes, são incompletos e inexatos, devido à introdução de algumas simplificações. Para considerar as incertezas existentes nos modelos são utilizados os fatores de modelagem (tratados como variáveis aleatórias). Estes fatores são empregados nos seguintes modelos de cálculo:

- a) modelos de cálculo das cargas;
- b) modelos de cálculo dos efeitos das cargas;
- c) modelos de cálculo das resistências.

Segundo ELLINGWOOD et alii (1980), as incertezas existentes nos modelos de cálculo das cargas já estão sendo consideradas nos valores dos coeficientes de variação adotados para as cargas permanentes e acidentais (item 5.2.1.).

O JCSS (2001) recomenda modelos probabilísticos para os fatores de modelagem dos efeitos das cargas  $\phi_S$  e das resistências  $\phi_R$  em função do tipo

de estrutura e do material utilizado. Para o modelo de cálculo da força cortante atuante em vigas e para o modelo de cálculo da resistência à força cortante de elementos de concreto armado são recomendados os seguintes modelos probabilísticos para  $\phi_S$  e  $\phi_R$ , respectivamente.

Tabela 5.11 – Modelo probabilístico do fator de modelagem da solicitação e da resistência.

| Caso  | Variável<br>Aleatória | Valor<br>Característico | Média | Desvio<br>Padrão | Coeficiente<br>de Variação<br>(%) | Distribuição |
|-------|-----------------------|-------------------------|-------|------------------|-----------------------------------|--------------|
| 1 e 2 | $\phi_{S}$            | 1,0                     | 1,0   | 0,10             | 10                                | Lognormal    |
| 1 e 2 | $\phi_R$              | 1,4                     | 1,4   | 0,35             | 25                                | Lognormal    |

O modelo probabilístico recomendado pelo JCSS (2001) para o fator de modelagem da resistência  $\phi_R$  contém valores de média e de coeficiente de variação elevados. Estes valores são adotados neste trabalho, pois ainda existe discordância em relação ao modelo de cálculo da capacidade resistente à força cortante, no que diz respeito à parcela de força cortante absorvida por mecanismos complementares ao de treliça, pois cada norma fornece uma equação diferente.

Acrescentando os fatores de modelagem como variáveis aleatórias passa-se de quatro para seis variáveis aleatórias nos problemas de análise de confiabilidade de seções de concreto armado. As funções de estado são modificadas, para incluir as novas variáveis:

$$G_{i} = \frac{\phi_{R} R_{i}}{\phi_{S} (S_{i})} - 1$$
(5.6)

### 5.4.2. Resultados

Utilizando os fatores de modelagem, a estrutura apresenta valores menores de índices de confiabilidade quando comparados com os fornecidos no primeiro exemplo, porque as imperfeições dos modelos de cálculo foram levadas em consideração e a estrutura foi melhor avaliada.

Verifica-se que o valores dos índices de confiabilidade (Tabela 5.12) diminuem mais para o Caso 1 do que para o Caso 2, comparado com os valores apresentados na Tabela 5.4, e que tanto para o Caso 1 quanto para o Caso 2 o valor de  $\beta_3$  (referente à tração diagonal) é menor do que  $\beta_r = 3.8$ .

| Caso | Proporç<br>carga | ões das<br>is (%) | Índices de confiabilidade<br>e probabilidades de falha |                 |           |                 |  |
|------|------------------|-------------------|--------------------------------------------------------|-----------------|-----------|-----------------|--|
|      | k <sub>g</sub>   | k <sub>q</sub>    | $\beta_2$                                              | p <sub>f2</sub> | $\beta_3$ | p <sub>f3</sub> |  |
| 1    | 75               | 25                | 6,74                                                   | 7,66E-12        | 3,63      | 1,44E-4         |  |
| 2    | 25               | 75                | 5,71                                                   | 5,66E-9         | 3,11      | 9,23E-4         |  |

Tabela 5.12 – Índices de confiabilidade e probabilidades de falha do terceiro exemplo para os modos de colapso.

A partir da Tabela 5.13 percebe-se que os valores do índice de confiabilidade equivalente (Caso 1 e Caso 2), considerando a formulação de sistemas em série, continuam assumindo os mesmos valores dos obtidos para o modo de falha referente à tração diagonal (Tabela 5.12) porque os valores de  $\beta_3$  são muito menores do que os valores de  $\beta_2$ .

Tabela 5.13 – Índice de confiabilidade e probabilidade de falha do terceiro exemplo para sistema em série.

| Caso | Ρ <sub>ik</sub> | $eta_{e,s	ext{erie}}$ | p <sub>f,série</sub> |
|------|-----------------|-----------------------|----------------------|
| 1    | 0,96            | 3,63                  | 1,44E-4              |
| 2    | 0,97            | 3,11                  | 9,23E-4              |

A Tabela 5.14 mostra que o fator de modelagem da resistência  $\phi_R$  é a variável aleatória que apresenta, no Caso 1, o maior fator de importância. No Caso 2, a variável aleatória  $V_q$  continua tendo importância elevada porque 75% da carga total é de natureza acidental.

Tabela 5.14 – Fatores de importância das variáveis aleatórias do terceiro exemplo para os modos de colapso.

| Casa | í         | Fatores de importância (%) |                 |     |      |          |                |  |  |  |
|------|-----------|----------------------------|-----------------|-----|------|----------|----------------|--|--|--|
| Caso | Indice    | f <sub>c</sub>             | f <sub>yw</sub> | Vg  | Vq   | $\phi_R$ | $\phi_{\rm S}$ |  |  |  |
|      | $\beta_2$ | 18,3                       | -               | 3,6 | 8,2  | 60,0     | 9,9            |  |  |  |
| I    | $\beta_3$ | 3,0                        | 0,8             | 5,5 | 5,8  | 72,9     | 12,0           |  |  |  |
|      | $\beta_2$ | 11,8                       | -               | 0,1 | 42,3 | 39,3     | 6,5            |  |  |  |
| 2    | $\beta_3$ | 1,9                        | 0,5             | 0,2 | 43,8 | 46,0     | 7,6            |  |  |  |

### 5.5. Quarto Exemplo

Este exemplo é teórico e tem como objetivo ilustrar a necessidade de se considerar a formulação de sistemas em série.

O terceiro exemplo é repetido diminuindo a altura útil da seção transversal (d = 220 mm), diminuindo o espaçamento da armadura transversal (s = 100 mm) e aumentando a área de armadura transversal ( $A_{sw} = 144 \text{ mm}^2$ ).

### 5.5.1.

# Resultados

A partir das Tabelas 5.15 e 5.16 verifica-se que quando os valores dos índices de confiabilidade  $\beta_2$  (referente ao esmagamento das bielas) e  $\beta_3$  (referente à tração diagonal) se aproximam, o índice de confiabilidade equivalente obtido considerando a formulação de sistemas em série assume um valor menor do que os valores obtidos para  $\beta_2$  e  $\beta_3$ , mostrando a importância de se considerar esta formulação. Neste exemplo, os fatores de modelagem são considerados.

Tabela 5.15 – Índices de confiabilidade e probabilidades de falha do quarto exemplo para os modos de colapso.

|      | Proporç        | ões das        | Índices de confiabilidade |          |           |                 |  |
|------|----------------|----------------|---------------------------|----------|-----------|-----------------|--|
| Caso | k <sub>g</sub> | k <sub>q</sub> | β <sub>2</sub>            | $p_{f2}$ | $\beta_3$ | p <sub>f3</sub> |  |
| 1    | 75             | 25             | 3,57                      | 1,80E-4  | 3,66      | 1,25E-4         |  |
| 2    | 25             | 75             | 3,14                      | 8,47E-4  | 3,14      | 8,52E-4         |  |

Tabela 5.16 – Índice de confiabilidade e probabilidade de falha do quarto exemplo para sistema em série.

| Caso | Ρ <sub>ik</sub> | $eta_{e,s	ext{erie}}$ | p <sub>f,série</sub> |
|------|-----------------|-----------------------|----------------------|
| 1    | 0,92            | 3,49                  | 2,41E-4              |
| 2    | 0,95            | 3,03                  | 1,21E-3              |

# 5.6. Quinto Exemplo

Este exemplo tem como objetivo dimensionar o reforço à força cortante necessário devido à suposição de dois acréscimos diferentes de cargas acidentais, conforme especificado na Tabela 5.17.

| Caso | V <sub>gk</sub><br>(kN) | V <sub>qk , inicial</sub><br>(kN) | ∆ V <sub>qk</sub><br>(kN) | V <sub>qk , final</sub><br>(kN) | $\frac{V_{S,final}}{V_{S,inicial}}$ |  |
|------|-------------------------|-----------------------------------|---------------------------|---------------------------------|-------------------------------------|--|
| 1a   | 71,18                   | 23,73                             | 47 45                     | 71,18                           | 1 50                                |  |
| 2a   | 23,73                   | 71,18                             | 47,40                     | 118,63                          | 1,50                                |  |
| 1b   | 71,18                   | 23,73                             | 74 40                     | 94,91                           | 4 75                                |  |
| 2b   | 23,73                   | 71,18                             | 71,18                     | 142,36                          | 1,75                                |  |

Tabela 5.17 – Acréscimos de cargas acidentais.

5.6.1.

### Considerações

Com os acréscimos de carga acidental os valores característicos, os valores médios e os valores dos desvios padrões contidos nos modelos probabilísticos (Caso 1 e Caso 2) de  $V_q$  são alterados. O valor do coeficiente de variação de  $V_q$  continua sendo 25%. As proporções das cargas permanentes e acidentais em relação à carga total também se alteram.

Tabela 5.18 – Alterações nos modelos probabilísticos das cargas acidentais e nas combinações de cargas devido aos acréscimos de carga acidental.

| Caso | Valor<br>Característico | Média<br>(kN) | Desvio<br>Padrão                                                                                                                | Proporç<br>cargas er<br>à carg | ões das<br>n relação<br>a total |
|------|-------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|
|      | ( <i>k</i> N)           | (101)         | $\frac{kN}{(kN)} \xrightarrow{\text{Padrad}} \frac{\text{a carga tot}}{k_g} \frac{k_g}{(\%)} \frac{k_q}{k_q}$ $1,18  17,79  50$ | k <sub>q</sub> (%)             |                                 |
| 1a   | 71,18                   | 71,18         | 17,79                                                                                                                           | 50                             | 50                              |
| 2a   | 118,63                  | 118,63        | 29,66                                                                                                                           | 17                             | 83                              |
| 1b   | 94,91                   | 94,91         | 23,73                                                                                                                           | 43                             | 57                              |
| 2b   | 142,36                  | 142,36        | 35,59                                                                                                                           | 14                             | 86                              |

Avaliando-se os índices de confiabilidade da seção de concreto armado para as novas solicitações, devido aos acréscimos de carga acidental, verifica-se que os valores do índice de confiabilidade  $\beta_2$  (referente ao esmagamento das bielas) diminuem, mas ainda continuam maiores do que o valor de referência  $\beta_r = 3.8$ , enquanto que os valores do índice de confiabilidade  $\beta_3$  (referente à tração diagonal) tornam-se muito baixos (Tabela 5.19).

Neste exemplo, são analisadas duas situações diferentes: I – sem considerar os fatores de modelagem e II – considerando os fatores de modelagem. Assim, pode-se observar a influência da adoção destes fatores, no entanto, ressalta-se que em problemas reais os fatores de modelagem devem sempre ser considerados.

Tabela 5.19 – Índices de confiabilidade e probabilidades de falha para os acréscimos de carga do quinto exemplo, para duas situações: I - sem considerar os fatores de modelagem e II – considerando os fatores de modelagem.

| Casa | Sem fator de modelagem |                 |           |                 |           | Com fator de modelagem |           |                 |  |
|------|------------------------|-----------------|-----------|-----------------|-----------|------------------------|-----------|-----------------|--|
| Caso | $\beta_2$              | p <sub>f2</sub> | $\beta_3$ | p <sub>f3</sub> | $\beta_2$ | p <sub>f2</sub>        | $\beta_3$ | p <sub>f3</sub> |  |
| 1a   | 6,22                   | 2,55E-10        | 2,10      | 1,76E-2         | 5,11      | 1,63E-7                | 2,13      | 1,65E-2         |  |
| 2a   | 5,04                   | 2,26E-7         | 1,55      | 6,01E-2         | 4,55      | 2,67E-6                | 1,92      | 2,77E-2         |  |
| 1b   | 5,32                   | 5,27E-8         | 1,14      | 1,26E-1         | 4,56      | 2,55E-6                | 1,61      | 5,41E-2         |  |
| 2b   | 4,47                   | 3,97E-6         | 0,90      | 1,85E-1         | 4,14      | 1,77E-5                | 1,47      | 7,08E-2         |  |

A partir dos valores dos índices de confiabilidade apresentados na Tabela 5.19 verifica-se a possibilidade ( $\beta_2 > \beta_r$ ) e a necessidade ( $\beta_3 < \beta_r$ ) de se realizar o reforço à força cortante. O reforço é executado com CFRP colado em forma de "U" (Figura 5.4) com o ângulo de suas fibras principais  $\beta = 90^{\circ}$ .



Figura 5.4 – Desenho esquemático do tipo de execução do reforço considerado nos exemplos.

As taxas geométricas de reforço necessárias para resistir aos acréscimos de carga acidental são dimensionadas por dois enfoques:

- semi-probabilístico projeto corrente (rotinas de cálculo apresentadas no Anexo A);
- probabilístico projeto baseado em confiabilidade (opção implementada no programa de confiabilidade de estruturas para dimensionamento do reforço à força cortante com CFRP (letra (c) dos itens 4.2.2. e 4.2.3.).

O material de reforço adotado é o tecido unidirecional de fibras de carbono impregnado "in situ" por resina epoxídica. São utilizados dois tipos diferentes de tecidos unidirecionais de fibras de carbono:

- Wabo®MBrace CF-130 (de alta resistência);
- Wabo®MBrace CF-530 (de alto módulo).

O dimensionamento da taxa geométrica de reforço necessária é realizado utilizando as propriedades geométricas e mecânicas desses dois tipos de tecidos (CF-130 e CF-530).

Os valores obtidos de taxas geométricas de reforço, para os dois enfoques de cálculo e para os dois tipos de tecidos considerados, são comparados.

### 5.6.2.

### Modelo Probabilístico da Resistência à Tração do Compósito

Para realizar o dimensionamento baseado em confiabilidade é preciso adotar modelos probabilísticos para as resistências à tração dos dois compósitos considerados, de acordo com o tipo de tecido de fibras de carbono utilizado (CF-130 ou CF-530).

Segundo manual técnico da MBrace, o compósito de fibras de carbono é fortemente influenciado pelas propriedades mecânicas do tecido de fibras utilizado. No dimensionamento do reforço somente a resistência à tração e o módulo longitudinal do tecido de fibras são considerados. Estes valores são determinados a partir da realização do ensaio de tração direta em corpos de CFRP, executados conforme recomendações prova de da ASTM D3039/D3039M (2000). A resistência à tração última é determinada considerando apenas a área do tecido, para isso considera-se no cálculo da área a espessura nominal do tecido ( $t_f = 0,165 \text{ mm}$ ). A resistência característica  $f_{fk}$ do CFRP, utilizada no dimensionamento, é determinada por:

$$f_{fk} = f_{fm} - 3\sigma_{f_f} \tag{5.7}$$

sendo:

 $f_{fm}$  - valor médio da resistência à tração última do CFRP;

 $\sigma_{f_{L}}$  - desvio padrão da resistência à tração última do CFRP.

A Tabela 5.20 fornece os valores médio e característico da resistência à tração última e os valores do módulo de elasticidade longitudinal dos compósitos constituídos pelos tecidos de fibras de carbono Wabo®MBrace. A Figura 5.5 apresenta as retas tensão x deformação dos mesmos compósitos.

Tabela 5.20 – Valores médio e característico da resistência à tração última e valores do módulo de elasticidade longitudinal dos compósitos constituídos pelos tecidos de fibras de carbono Wabo®MBrace.

| Tecidos unidirecionais | f <sub>fm</sub> (MPa) | f <sub>fk</sub> (MPa) | E <sub>f</sub> (GPa) |
|------------------------|-----------------------|-----------------------|----------------------|
| Wabo®MBrace CF-130     | 4275                  | 3790                  | 228                  |
| Wabo®MBrace CF-530     | 4027                  | 3517                  | 372                  |



Figura 5.5 – Retas tensão x deformação dos compósitos constituídos pelos tecidos de fibras de carbono Wabo®MBrace.

Os modelos probabilísticos adotados para as resistências à tração dos dois compósitos de fibras de carbono Wabo®MBrace são baseados nos valores fornecidos na Tabela 5.20, conforme apresentado na Tabela 5.21. O módulo de elasticidade longitudinal é tratado como variável determinística.

A distribuição de probabilidades recomendada para a resistência à tração dos compósitos de fibras de carbono é a de valores extremos mínimos do Tipo III (Weibull), segundo PLEVRIS et alii (1995).

| Caso                      | Variável<br>Aleatória | Valor<br>Característico | Média | Desvio<br>Padrão | Coeficiente<br>de Variação<br>(%) | Distribuição |  |
|---------------------------|-----------------------|-------------------------|-------|------------------|-----------------------------------|--------------|--|
| Tecido Wabo®MBrace CF-130 |                       |                         |       |                  |                                   |              |  |
| 1 e 2                     | f <sub>f</sub> (MPa)  | 3790                    | 4275  | 161,67           | 3,78                              | Weibull      |  |
| Tecido Wabo®MBrace CF-530 |                       |                         |       |                  |                                   |              |  |
| 1 e 2                     | f <sub>f</sub> (MPa)  | 3517                    | 4027  | 170              | 4,22                              | Weibull      |  |

Tabela 5.21 – Modelos probabilísticos das resistências à tração dos compósitosconstituídos pelos tecidos de fibras de carbono Wabo®MBrace.

### 5.6.3.

### Resultados

Os resultados apresentados nas tabelas a seguir (exceto Tabelas 5.24 e 5.25) foram obtidos utilizando a opção implementada no programa de confiabilidade de estruturas para dimensionamento da taxa geométrica de reforço (letra (d) do item 4.2.2.).

Os resultados das Tabelas 5.24 e 5.25 foram obtidos utilizando a opção implementada no programa de confiabilidade de estruturas para análise de seções de concreto armado reforçadas à força cortante com CFRP para um valor fornecido de taxa geométrica de reforço (letra (b) do item 4.2.2.). O valor de taxa geométrica fornecido no programa é o obtido pelo projeto corrente.

Os gráficos foram elaborados a partir dos resultados obtidos utilizando a opção implementada para análise de seções de concreto armado reforçadas à força cortante com CFRP com a taxa geométrica de reforço variando do valor mínimo ao máximo (letra (c) dos itens 4.2.2. e 4.2.3.).

Como mencionado no Capítulo 4, optou-se por dimensionar o reforço utilizando o modelo semi-empírico de CHEN e TENG (2003 a, b) e as prescrições do Bulletin 14 *fib* (2001). Os valores obtidos de taxa geométrica de reforço necessária, pelo enfoque semi-probabilístico e pelo enfoque probabilístico, são apresentados nas Tabelas 5.22 e 5.23, conforme o material de reforço utilizado (tecido unidirecional de fibras de carbono Wabo@MBrace CF-130 ou Wabo@MBrace CF-530). Para cada caso analisado, o reforço é dimensionado sem considerar os fatores de modelagem e, também, considerando, assim pode-se avaliar a influência dos fatores de modelagem.

Pelo enfoque semi-probabilístico, a taxa geométrica de reforço obtida utilizando o modelo de CHEN e TENG (2003 a, b) é maior do que utilizando as prescrições do Bulletin 14 *fib* (2001). Isto ocorre, principalmente, porque as

equações apresentadas pelo Bulletin 14 *fib* (2001) são dadas em função da resistência média do concreto à compressão, enquanto que as equações apresentadas no modelo CHEN e TENG (2003 a, b) são dadas em função da resistência característica do concreto à compressão. No enfoque probabilístico a resistência à compressão do concreto é considerada como variável aleatória utilizando nos dois modelos, CHEN e TENG (2003 a, b) e Bulletin 14 *fib* (2001), o mesmo modelo probabilístico de  $f_c$ .

De acordo com os valores apresentados nas Tabelas 5.22 e 5.23 verificase que quando é utilizado como material de reforço o tecido unidirecional de fibras de carbono Wabo@MBrace CF-530 a taxa geométrica de reforço necessária  $\rho_f$  é bem menor do que quando é utilizado o tecido Wabo@MBrace CF-130.

Quando os fatores de modelagem não são considerados, verifica-se que para os Casos 1a e 1b (maior proporção de carga permanente) as taxas geométricas de reforço obtidas pelo enfoque probabilístico são bem menores do que as obtidas pelo enfoque semi-probabilístico. Para os Casos 2a e 2b (maior proporção de carga acidental) ocorre o contrário.

Quando os fatores de modelagem são considerados, as taxas geométricas de reforço obtidas pelo enfoque probabilístico, para todos os casos, são bem maiores do que as obtidas pelo enfoque semi-probabilístico.

Nos casos onde o valor do índice de confiabilidade  $\beta_3$  obtido para a seção original, antes do acréscimo de carga (Caso 1, quando os fatores de modelagem não são considerados – Tabela 5.4) é maior do que  $\beta_r = 3,8$  a taxa geométrica de reforço fornecida pelo projeto probabilístico é menor do que a obtido pelo projeto corrente, pois a seção de concreto armado original será responsável por suportar uma parcela da carga que foi acrescida. Nesta situação a seção reforçada passa a apresentar uma confiabilidade menor do que apresentava antes, porém ainda assim dentro de um nível aceitável de confiabilidade.

Nos casos onde o valor do índice de confiabilidade  $\beta_3$  obtido para a seção sem reforço (Caso 1 e Caso 2, quando os fatores de modelagem são considerados – Tabela 5.12) a taxa geométrica de reforço fornecida pelo projeto probabilístico é maior do que a obtido pelo projeto corrente, pois o reforço é responsável por aumentar o índice de confiabilidade da seção original, sem reforço, para  $\beta_r = 3.8$  e ainda suportar a carga acidental acrescida mantendo

125

este valor de índice de confiabilidade. Nesta situação o reforço é responsável, também, por suportar uma parcela da carga acidental já existente antes do acréscimo de carga e a seção passa a apresentar uma confiabilidade maior do que apresentava antes.

Tabela 5.22 – Taxas geométricas de reforço obtidas para o quinto exemplo, utilizando o tecido unidirecional de fibras de carbono <u>Wabo®MBrace CF-130</u>.

| Caso (%) |          | Proporções<br>das cargas |                             | $\rho_{f}$    | $ ho_{f}$ (%)   |                                                            | tor de Com fator de agem modelagem |        |        |
|----------|----------|--------------------------|-----------------------------|---------------|-----------------|------------------------------------------------------------|------------------------------------|--------|--------|
|          | ⊿<br>(%) | uas c                    | (%) projeto<br>(%) corrente |               | jeto<br>ente    | $ \rho_{f} $ (%) dimensionamento baseado em confiabilidade |                                    |        |        |
|          |          | k                        | k                           | Chon          | fib             | Chon                                                       | fib                                | Chon   | fib    |
|          |          | Λg                       | Λq                          | Chen tib      | Chen            | an                                                         | Chen                               | IID    |        |
| 1a       | 50       | 50                       | 50                          | 0 4747 0 4007 | 0 1227          | 0,0845                                                     | 0,0715                             | 0,2284 | 0,2367 |
| 2a       |          | 17                       | 83                          | 0,1747        | 0,1747 0,1327 - |                                                            | 0,3503                             | 0,4780 | 0,5564 |
| 1b       | 75       | 43                       | 57                          |               |                 | 0,2542                                                     | 0,2784                             | 0,5099 | 0,5987 |
| 2b       | ,0       | 14                       | 86                          | 0,4343        | 0,3335          | 0,6601                                                     | 0,7658                             | 0,9718 | 1,1231 |

Tabela 5.23 – Taxas geométricas de reforço obtidas para o quinto exemplo, utilizando o tecido unidirecional de fibras de carbono <u>Wabo®MBrace CF-530</u>.

|      |          | Propo                         | orções | $ ho_{f}$           | (%)    | Sem fa<br>modela                                         | tor de<br>agem | Com fator de<br>modelagem |        |  |  |
|------|----------|-------------------------------|--------|---------------------|--------|----------------------------------------------------------|----------------|---------------------------|--------|--|--|
| Caso | ⊿<br>(%) | uas c<br>(%                   | %)     | projeto<br>corrente |        | $ \rho_f $ (%) dimensionamento baseado em confiabilidade |                |                           |        |  |  |
|      |          | ,                             | ,      |                     |        |                                                          |                | abiliadae                 |        |  |  |
|      |          | K <sub>g</sub> K <sub>q</sub> |        | Chen fib            |        | Chen                                                     | fib            | Chen                      | fib    |  |  |
| 1a   | 50       | 50                            | 50     | 0 1 1 6 4           | 0.0012 | 0,0631                                                   | 0,0445         | 0,1325                    | 0,1451 |  |  |
| 2a   |          | 17                            | 83     | 0,1104              | 0,0013 | 0,1850                                                   | 0,2147         | 0,2969                    | 0,3410 |  |  |
| 1b   | 75       | 43                            | 57     | 0.0000              | 0.0014 | 0,1493                                                   | 0,1706         | 0,3151                    | 0,3670 |  |  |
| 2b   | 2b 75    | 14                            | 86     | 0,3099              | 0,2044 | 0,4032                                                   | 0,4693         | 0,5979                    | 0,6884 |  |  |

A seguir, são apresentadas tabelas (Tabelas 5.24 e 5.25) com valores dos índices de confiabilidade obtidos para as taxas geométricas de reforço dimensionadas pelo projeto corrente. Verifica-se que, quando os fatores de modelagem não são considerados, os valores dos índices de confiabilidade  $\beta_4$  obtidos para o Caso 2a e o Caso 2b são menores que  $\beta_r = 3,80$ . Quando os fatores de modelagem são considerados todos os casos apresentam  $\beta_4 < \beta_r$ .

Tabela 5.24 – Índices de confiabilidade e probabilidades de falha obtidos para as taxas geométricas de reforço dimensionadas pelo projeto corrente, utilizando o tecido <u>Wabo®MBrace CF-130</u>.

|      |       | Sem fato | or de mo | delagem   | Ì    | Com fator de modelagem |      |      |           |      |  |  |
|------|-------|----------|----------|-----------|------|------------------------|------|------|-----------|------|--|--|
| Caso | ße    | þ        | 33       | $\beta_4$ |      | ße                     | þ    | 3    | $\beta_4$ |      |  |  |
|      | $P_2$ | Chen     | fib      | Chen      | fib  | $P_2$                  | Chen | fib  | Chen      | fib  |  |  |
| 1a   | 6,22  | 6,74     | 5,71     | 4,51      | 4,20 | 5,11                   | 5,08 | 4,48 | 3,70      | 3,50 |  |  |
| 2a   | 5,04  | 5,14     | 4,35     | 3,41      | 3,18 | 4,55                   | 4,46 | 3,93 | 3,26      | 3,09 |  |  |
| 1b   | 5,32  | 8,62     | 6,41     | 4,30      | 3,95 | 4,56                   | 6,34 | 4,05 | 3,67      | 3,43 |  |  |
| 2b   | 4,47  | 7,12     | 5,18     | 3,43      | 3,15 | 4,14                   | 4,91 | 3,63 | 3,39      | 3,08 |  |  |

Tabela 5.25 – Índices de confiabilidade e probabilidades de falha obtidos para as taxas geométricas de reforço dimensionadas pelo projeto corrente, utilizando o tecido Wabo®MBrace CF-530.

|      |       | Sem fato | or de mo | delagem   | l    | Com fator de modelagem |      |      |           |      |  |  |
|------|-------|----------|----------|-----------|------|------------------------|------|------|-----------|------|--|--|
| Caso | ße    | β        | 3        | $\beta_4$ |      | ße                     | β    | 3    | $\beta_4$ |      |  |  |
|      | $P_2$ | Chen     | fib      | Chen      | fib  | $P_2$                  | Chen | fib  | Chen      | fib  |  |  |
| 1a   | 6,22  | 5,47     | 4,53     | 4,51      | 4,20 | 5,11                   | 4,30 | 3,71 | 3,70      | 3,50 |  |  |
| 2a   | 5,04  | 4,14     | 3,42     | 3,41      | 3,18 | 4,55                   | 3,78 | 4,05 | 3,26      | 3,43 |  |  |
| 1b   | 5,32  | 7,17     | 4,87     | 4,48      | 3,95 | 4,56                   | 3,78 | 5,47 | 3,26      | 3,79 |  |  |
| 2b   | 4,47  | 7,12     | 5,18     | 3,43      | 3,15 | 4,14                   | 4,91 | 3,63 | 3,39      | 3,08 |  |  |

Adiante, são apresentadas tabelas com valores dos índices de confiabilidade e suas respectivas probabilidades de falha considerando ou não a formulação de sistemas em série, para as taxas geométricas de reforço obtidas pelo dimensionamento baseado em confiabilidade.

Utilizando o tecido Wabo®MBrace CF-130 (Tabelas 5.26 e 5.28), verificase que os valores dos índices de confiabilidade  $\beta_2$  e  $\beta_3$  são muito maiores do que os valores de  $\beta_4$ , portanto os valores de  $\beta_{e,série}$  (Tabelas 5.27 e 5.29), considerando a formulação de sistemas em série, assumem valores iguais aos valores de  $\beta_4$  e o reforço é dimensionado tendo como restrição  $\beta_{e,série} = \beta_4 = 3,8$ . A seção transversal analisada tende a falhar devido ao descolamento do compósito. No entanto, no Caso 2b o valor do índice de confiabilidade  $\beta_2$  se aproxima do valor apresentado por  $\beta_4$  e para que  $\beta_{e,série} = 3,8$  é preciso que  $\beta_4$  assuma valor um pouco maior do que  $\beta_r = 3,8$ .

No Caso 2b (utilizando formulação de CHEN e TENG (2003 a, b)), quando os fatores de modelagem não são considerados, o índice de confiabilidade  $\beta_4$  assume valor maior que  $\beta_r = 3.8$ , porque a formulação de CHEN e TENG (2003 a, b) apresenta descontinuidade por ser dada em função da espessura do compósito  $t_f$ . Para a taxa geométrica de reforço  $\rho_f = 0.66\%$ ( $t_f = 3 \cdot 0.165 \, mm$ - três camadas de CFRP)  $\rightarrow \beta_4 = 3.78$  e para  $\rho_f = 0.66001\%$ ( $t_f = 4 \cdot 0.165 \, mm$ - quatro camadas de CFRP)  $\rightarrow \beta_4 = 3.81$ . O índice de confiabilidade  $\beta_{e,série}$  assume valor igual a  $\beta_4$ .

Tabela 5.26 – Índices de confiabilidade e probabilidades de falha do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-130</u>, sem considerar os fatores de modelagem.

| Caso | ß                     | D        | Chen      |                 |           | fib             | (         | Chen            | fib       |                 |
|------|-----------------------|----------|-----------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-----------------|
| Caso | <i>P</i> <sub>2</sub> | $P_{f2}$ | $\beta_3$ | p <sub>f3</sub> | $\beta_3$ | p <sub>f3</sub> | $\beta_4$ | p <sub>f4</sub> | $\beta_4$ | p <sub>f4</sub> |
| 1a   | 6,22                  | 2,55E-10 | 4,89      | 4,96E-7         | 4,75      | 1,02E-6         |           |                 |           |                 |
| 2a   | 5,04                  | 2,26E-7  | 6,70      | 1,05E-11        | 5,98      | 1,09E-9         | 3,80      | 7,23E-5         | 3,80      | 7,23E-5         |
| 1b   | 5,32                  | 5,27E-8  | 6,72      | 9,05E-12        | 6,02      | 8,65E-10        |           |                 |           |                 |
| 2b   | 4,47                  | 3,97E-6  | 8,69      | -               | 6,96      | 1,74E-12        | 3,81      | 6,94-5          | 3,80      | 7,22E-5         |

Tabela 5.27 – Índice de confiabilidade equivalente e probabilidade de falha do quinto exemplo para sistema em série, utilizando o tecido <u>Wabo®MBrace CF-130</u>, sem considerar os fatores de modelagem.

|      |             |             | Cł         | nen                                                    |                      | fib         |             |            |                                                        |                      |  |
|------|-------------|-------------|------------|--------------------------------------------------------|----------------------|-------------|-------------|------------|--------------------------------------------------------|----------------------|--|
| Caso | $\rho_{23}$ | $\rho_{24}$ | $ ho_{34}$ | $eta_{	extsf{e},	extsf{s}\acute{	extsf{e}}i	extsf{e}}$ | P <sub>f,série</sub> | $\rho_{23}$ | $\rho_{24}$ | $ ho_{34}$ | $eta_{	extsf{e},	extsf{s}\acute{	extsf{e}}i	extsf{e}}$ | P <sub>f,série</sub> |  |
| 1a   | 0,89        | 0,93        | 0,99       |                                                        |                      | 0,92        | 0,94        | 0,99       |                                                        |                      |  |
| 2a   | 0,90        | 0,95        | 0,98       | 3,800                                                  | 7,23E-5              | 0,94        | 0,96        | 0,99       | 2 900                                                  | 7 225 5              |  |
| 1b   | 0,87        | 0,94        | 0,98       |                                                        |                      | 0,92        | 0,94        | 0,99       | 3,800                                                  | 7,230-5              |  |
| 2b   | 0,88        | 0,95        | 0,97       | 3,810                                                  | 6,94E-5              | 0,93        | 0,96        | 0,98       |                                                        |                      |  |

sendo:  $\rho_{23}$  – coeficiente de correlação entre os modos de ruptura  $G_2$  e  $G_3$ ;  $\rho_{24}$  – coeficiente de correlação entre os modos de ruptura  $G_2$  e  $G_4$ ;  $\rho_{34}$  – coeficiente de correlação entre os modos de ruptura  $G_3$  e  $G_4$ .

| Tabela 5.28 – Índices de confiabilidade e probabilidades de falha do quinto |
|-----------------------------------------------------------------------------|
| exemplo, utilizando o tecido Wabo®MBrace CF-130, considerando os fatores de |
| modelagem.                                                                  |

| Caso           | ρ    | <b>D</b> | Chen      |                 |           | fib             | (         | Chen            | fib       |                 |
|----------------|------|----------|-----------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-----------------|
| Caso $\beta_2$ |      | $P_{f2}$ | $\beta_3$ | p <sub>f3</sub> | $\beta_3$ | p <sub>f3</sub> | $\beta_4$ | p <sub>f4</sub> | $\beta_4$ | p <sub>f4</sub> |
| 1a             | 5,11 | 1,63E-7  | 5,59      | 1,12E-8         | 5,17      | 1,14E-7         |           |                 |           |                 |
| 2a             | 4,55 | 2,67E-6  | 6,37      | 9,63E-11        | 5,63      | 9,06E-9         | 3,80      | 7,23E-5         | 3,80      | 7,23E-5         |
| 1b             | 4,56 | 2,55E-6  | 6,71      | 9,72E-12        | 5,88      | 2,10E-9         |           |                 |           |                 |
| 2b             | 4,14 | 1,77E-5  | 7,54      | 2,41E-14        | 6,20      | 2,72E-10        | 3,80      | 7,14E-5         | 3,80      | 7,18E-5         |

Tabela 5.29 – Índice de confiabilidade equivalente e probabilidade de falha do quinto exemplo para sistema em série, utilizando o tecido Wabo®MBrace CF-130, considerando os fatores de modelagem.

|      |                 |                 | Cł          | nen                                       |                      | fib             |                 |             |                                  |                      |  |
|------|-----------------|-----------------|-------------|-------------------------------------------|----------------------|-----------------|-----------------|-------------|----------------------------------|----------------------|--|
| Caso | ρ <sub>12</sub> | ρ <sub>13</sub> | $\rho_{23}$ | $eta_{\mathrm{e},\mathrm{s\acute{e}rie}}$ | p <sub>f,série</sub> | ρ <sub>12</sub> | ρ <sub>13</sub> | $\rho_{23}$ | $eta_{\mathrm{e,s\acute{e}rie}}$ | p <sub>f,série</sub> |  |
| 1a   | 0,94            | 0,97            | 0,99        |                                           |                      | 0,96            | 0,97            | 0,99        |                                  |                      |  |
| 2a   | 0,95            | 0,98            | 0,99        | 2 000                                     | 7,23E-5              | 0,97            | 0,98            | 0,99        | 2 000                            | 7 005 5              |  |
| 1b   | 0,93            | 0,97            | 0,99        | 3,800                                     |                      | 0,96            | 0,97            | 0,99        | 3,000                            | 7,23E-5              |  |
| 2b   | 0,94            | 0,98            | 0,99        |                                           |                      | 0,96            | 0,98            | 0,99        |                                  |                      |  |

Quando o tecido Wabo®MBrace CF-530 é utilizado constata-se o mesmo observado anteriormente, para o tecido Wabo®MBrace CF-130, com a diferença de que para o Caso 1a (utilizando formulação do Bulletin 14 fib (2001)), quando os fatores de modelagem não são considerados, os valores de  $\beta_3$  e  $\beta_4$  são próximos e maiores que 3,8 para que  $\beta_{e.serie} = 3,8$ .

Tabela 5.30 – Índices de confiabilidade e probabilidades de falha do quinto exemplo, utilizando o tecido Wabo®MBrace CF-530, sem considerar os fatores de modelagem.

| Caso | P     | D        | Chen      |                 |           | fib             | (         | Chen            | fib       |                 |
|------|-------|----------|-----------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-----------------|
| Caso | $P_2$ | $P_{f2}$ | $\beta_3$ | p <sub>f3</sub> | $\beta_3$ | p <sub>f3</sub> | $\beta_4$ | p <sub>f4</sub> | $\beta_4$ | p <sub>f4</sub> |
| 1a   | 6,22  | 2,55E-10 | 4,24      | 1,12E-5         | 3,85      | 5,88E-5         |           |                 | 3,81      | 6,97E-5         |
| 2a   | 5,04  | 2,26E-7  | 5,13      | 1,44E-7         | 4,62      | 1,92E-6         | 3,80      | 7,23E-5         | 2 00      | 7 225 5         |
| 1b   | 5,32  | 5,27E-8  | 4,99      | 2,98E-7         | 4,58      | 2,36E-6         |           |                 | 3,80      | 7,23E-5         |
| 2b   | 4,47  | 3,97E-6  | 6,64      | 1,62E-11        | 5,26      | 7,00E-8         | 3,80      | 7,22E-5         | 3,80      | 7,22E-5         |

Tabela 5.31 – Índice de confiabilidade equivalente e probabilidade de falha do quinto exemplo para sistema em série, utilizando o tecido <u>Wabo®MBrace CF-530</u>, sem considerar os fatores de modelagem.

|      |             |             | Cl          | nen                                       |                      | fib             |             |                 |                                  |                      |  |
|------|-------------|-------------|-------------|-------------------------------------------|----------------------|-----------------|-------------|-----------------|----------------------------------|----------------------|--|
| Caso | <i>ρ</i> 12 | <i>Ρ</i> 13 | $\rho_{23}$ | $eta_{\mathrm{e},\mathrm{s\acute{e}rie}}$ | p <sub>f,série</sub> | ρ <sub>12</sub> | <i>Ρ</i> 13 | ρ <sub>23</sub> | $eta_{\mathrm{e,s\acute{e}rie}}$ | p <sub>f,série</sub> |  |
| 1a   | 0,90        | 0,93        | 0,99        |                                           |                      | 0,92            | 0,94        | 1,00            |                                  |                      |  |
| 2a   | 0,91        | 0,95        | 0,99        | 2 000                                     | 7,23E-5              | 0,94            | 0,96        | 0,99            | 2 000                            | 7 005 5              |  |
| 1b   | 0,89        | 0,94        | 0,99        | 3,800                                     |                      | 0,92            | 0,94        | 0,99            | 3,800                            | 7,23E-5              |  |
| 2b   | 0,90        | 0,95        | 0,97        |                                           |                      | 0,94            | 0,96        | 0,99            |                                  |                      |  |

Tabela 5.32 – Índices de confiabilidade ( $\beta_3 \in \beta_4$ ) e probabilidades de falha do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-530</u>, considerando os fatores de modelagem.

| ြားဝ | ρ        | n        | Chen      |                 | fib       |                 | (         | Chen            | fib       |                 |  |
|------|----------|----------|-----------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-----------------|--|
| Caso | $\rho_2$ | $P_{f2}$ | $\beta_3$ | p <sub>f3</sub> | $\beta_3$ | p <sub>f3</sub> | $\beta_4$ | p <sub>f4</sub> | $\beta_4$ | p <sub>f4</sub> |  |
| 1a   | 5,11     | 1,63E-7  | 4,50      | 3,34E-6         | 4,25      | 1,05E-5         |           |                 |           |                 |  |
| 2a   | 4,55     | 2,67E-6  | 5,28      | 6,58E-8         | 4,62      | 1,89E-6         | 3,80      | 7,23E-5         | 3,80      | 7,23E-5         |  |
| 1b   | 4,56     | 2,55E-6  | 5,51      | 1,81E-8         | 4,76      | 9,52E-7         |           |                 |           |                 |  |
| 2b   | 4,14     | 1,77E-5  | 6,26      | 1,91E-10        | 5,06      | 2,04E-7         | 3,80      | 7,14E-5         | 3,80      | 7,18E-5         |  |

Tabela 5.33 – Índice de confiabilidade equivalente e probabilidade de falha do quinto exemplo para sistema em série, utilizando o tecido <u>Wabo®MBrace CF-530</u>, considerando os fatores de modelagem.

|      |                 |             | Cł          | nen                                                    |                      | fib             |                 |             |                                                        |                      |  |
|------|-----------------|-------------|-------------|--------------------------------------------------------|----------------------|-----------------|-----------------|-------------|--------------------------------------------------------|----------------------|--|
| Caso | ρ <sub>12</sub> | <i>Ρ</i> 13 | $\rho_{23}$ | $eta_{	extsf{e},	extsf{s}\acute{	extsf{e}}i	extsf{e}}$ | p <sub>f,série</sub> | ρ <sub>12</sub> | ρ <sub>13</sub> | $\rho_{23}$ | $eta_{	extsf{e},	extsf{s}\acute{	extsf{e}}i	extsf{e}}$ | p <sub>f,série</sub> |  |
| 1a   | 0,95            | 0,97        | 0,99        |                                                        |                      | 0,96            | 0,97            | 1,00        |                                                        |                      |  |
| 2a   | 0,95            | 0,98        | 0,99        | 2 800                                                  | 7,23E-5              | 0,97            | 0,98            | 1,00        | 2 000                                                  | 7,23E-5              |  |
| 1b   | 0,94            | 0,97        | 0,99        | 3,800                                                  |                      | 0,96            | 0,98            | 0,99        | 3,800                                                  |                      |  |
| 2b   | 0,94            | 0,98        | 0,99        |                                                        |                      | 0,97            | 0,98            | 0,99        |                                                        |                      |  |

Nas figuras a seguir (Figuras 5.6 e 5.7) são apresentados gráficos que relacionam valores de taxa geométrica de reforço com os valores dos índices de confiabilidade ( $\beta_2$ ,  $\beta_3$ ,  $\beta_4$  e  $\beta_r$ ) para o Caso 2a, quando os fatores de modelagem são considerados.

Os valores de taxa geométrica de reforço variam do valor mínimo, definido pelo espaçamento máximo permitido, para o valor máximo, definido pelo número máximo de camadas de reforço recomendado.

Para este exemplo  $s_{f,max} = 270 \, mm$  (entre eixos de estribos de CFRP). Adotando largura dos estribos de CFRP igual a *50 mm* o valor mínimo da taxa geométrica de reforço é  $\rho_{f,min} = 0,041\%$ . O valor máximo é  $\rho_{f,max} = 1,1\%$ , considerando a utilização de cinco camadas de reforço com  $w_f = s_f$ .

As figuras indicam que a seção analisada neste exemplo tende sempre a falhar devido ao descolamento do reforço, independente da taxa geométrica de reforço utilizada e que enquanto o valor de  $\beta_3$  aumenta consideravelmente com o aumento da taxa de reforço, o valor de  $\beta_4$  tende a ficar constante.

O valor do índice de confiabilidade  $\beta_3$  é referente a função de estado que avalia a tração diagonal, devido à ruptura à tração do reforço, portanto quanto maior a área de compósito utilizada maior é o valor da resistência alcançada pelo reforço, tornando maior o valor de  $\beta_3$ .

O valor do índice de confiabilidade  $\beta_4$  é referente a função de estado que avalia a tração diagonal, devido ao descolamento do reforço, neste caso, quanto mais espessa a camada de reforço maior é a propensão do mesmo descolar e com isso a resistência atingida pelo reforço tende a ficar constante, assim como o valor de  $\beta_4$ .

A partir das Figuras 5.6 e 5.7 verifica-se que quando as equações propostas pelo modelo de CHEN e TENG (2003 a, b) são utilizadas nas funções de estado obtém-se valores maiores de  $\beta_3$  e  $\beta_4$  do que quando são utilizadas as equações propostas pelas prescrições do Bulletin 14 *fib* (2001), a não ser quando  $\rho_f \leq 0,10\%$ .



Figura 5.6 – Gráfico taxa geométrica do reforço x índices de confiabilidade para o Caso 2a do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-130</u>, considerando os fatores de modelagem.



Figura 5.7 – Gráfico taxa geométrica do reforço x índices de confiabilidade para o Caso 2a do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-530</u>, considerando os fatores de modelagem.

Nas figuras a seguir (Figuras 5.8 e 5.9) são apresentados gráficos que relacionam valores de taxa geométrica de reforço com os valores dos índices de confiabilidade ( $\beta_4$  e  $\beta_r$ ) para o Caso 1b, sem considerar os fatores de modelagem e, também, considerando.



Os gráficos ilustram a necessidade de acréscimo de taxa geométrica de reforço quando os fatores de modelagem são considerados para  $\beta_4 \ge \beta_r = 3.8$ .

Figura 5.8 – Gráfico taxa geométrica do reforço x índice de confiabilidade  $\beta_4$  para o Caso 1b do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-130</u>.





As equações propostas por CHEN e TENG (2003 a, b) para calcular  $V_{f.d}$ , apresentadas no item 4.2.4.2, são dadas em função da espessura do reforço  $t_f$ . Quando mais de uma camada de CFRP é utilizada o valor de  $t_f$  é multiplicado



pelo número de camadas. Portanto, o índice de confiabilidade  $\beta_4$  avaliado pela função de estado  $G_4$  varia de acordo com o número de camadas de CFRP.

Figura 5.10 – Gráfico taxa geométrica do reforço x índice de confiabilidade  $\beta_4$ , variando a quantidade de camadas de reforço, para o Caso 1b do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-130</u>, sem considerar os fatores de modelagem.



Figura 5.11 – Gráfico taxa geométrica do reforço x índice de confiabilidade  $\beta_4$ , variando a quantidade de camadas de reforço, para o Caso 1b do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-130</u>, considerando os fatores de modelagem.

Os gráficos apresentados nas Figuras 5.10 a 5.13 mostram que o valor de  $\beta_4$  diminui para a mesma taxa geométrica de reforço quando a quantidade

de camadas aumenta. Pode-se afirmar que é mais apropriado adotar sempre o menor número de camadas possível.

Estes gráficos indicam os valores de  $\rho_f$  necessários para  $\beta_4 \ge \beta_r$  de acordo com o número de camadas utilizadas.



Figura 5.12 – Gráfico taxa geométrica do reforço x índice de confiabilidade  $\beta_4$ , variando a quantidade de camadas de reforço, para o Caso 1b do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-530</u>, sem considerar os fatores de modelagem.



Figura 5.13 – Gráfico taxa geométrica do reforço x índice de confiabilidade  $\beta_4$  variando a quantidade de camadas de reforço, para o Caso 1b do quinto exemplo, utilizando o tecido <u>Wabo®MBrace CF-530</u>, considerando os fatores de modelagem.

No reforço à força cortante o compósito não deve se deformar muito, então utilizando um material que apresenta alto módulo de elasticidade consegue-se chegar a resistências maiores com menores quantidades de reforço e com o mesmo valor de deformação específica efetiva obtido para um material que apresenta alta resistência, e conseqüentemente maior valor de deformação específica última. A Tabela 5.34 apresenta os valores da deformação específica efetiva para os dois materiais de reforço e para cada situação analisada.

|      |       | Deformação Específica Efetiva (‰) |          |      |       |                   |          |                                                                               |  |  |
|------|-------|-----------------------------------|----------|------|-------|-------------------|----------|-------------------------------------------------------------------------------|--|--|
|      | Wab   | o®MBr                             | ace CF-1 | 30   | Wab   | o®MBr             | ace CF-5 | 30                                                                            |  |  |
| Caso |       | $\varepsilon_{fu} = 1$            | 6,6‰     |      |       | € <sub>fu</sub> = | 9,4‰     | e CF-530<br>Com fator<br>Chen fib<br>3,3 3,0<br>2,2 1,9<br>2,1 1,8<br>1,5 1.2 |  |  |
|      | Sem f | ator                              | Com f    | ator | Sem f | ator              | Com f    | ator                                                                          |  |  |
|      | Chen  | fib                               | Chen     | fib  | Chen  | fib               | Chen     | fib                                                                           |  |  |
| 1a   | 4,9   | 5,8                               | 3,1      | 3,0  | 4,0   | 5,7               | 3,3      | 3,0                                                                           |  |  |
| 2a   | 2,8   | 2,4                               | 2,2      | 1,9  | 2,8   | 2,4               | 2,2      | 1,9                                                                           |  |  |
| 1b   | 3,0   | 2,7                               | 2,1      | 1,8  | 3,1   | 2,7               | 2,1      | 1,8                                                                           |  |  |
| 2b   | 1,8   | 1,5                               | 1,5      | 1,3  | 1,8   | 1,5               | 1,5      | 1,3                                                                           |  |  |

Tabela 5.34 – Deformação específica efetiva do reforço.

A Tabela 5.35 fornece a quantidade de camadas de compósito necessária para atender os valores de taxas geométricas de reforço apresentados nas Tabelas 5.22 e 5.23, sendo  $t_f = 0,165 \, mm$ .

Utilizando o tecido Wabo®MBrace CF-530 realiza-se o reforço necessário com uma quantidade menor de camadas, o que torna o reforço mais eficiente.

As prescrições do Bulletin 14 *fib* (2001) recomendam que não se utilizem mais de cinco camadas de reforço, assim, considerando os fatores de modelagem, para o Caso 2b, deve-se optar por utilizar o tecido CF-530.

Tabela 5.35 – Número de camadas de compósito necessárias para o reforço.

|      | N° ( | de cama                       | das de c | ompósit | o necess | sária par       | a o refoi | ço  |  |
|------|------|-------------------------------|----------|---------|----------|-----------------|-----------|-----|--|
| 0    | Wa   | bo®MBr                        | ace CF-1 | 130     | Wat      | o®MBrace CF-530 |           |     |  |
| Caso | Sem  | Sem fator Com fator Sem fator | fator    | Com     | fator    |                 |           |     |  |
|      | Chen | fib                           | Chen     | fib     | Chen     | fib             | Chen      | fib |  |
| 1a   | 1    | 1                             | 2        | 2       | 1        | 1               | 1         | 1   |  |
| 2a   | 2    | 2                             | 3        | 3       | 1        | 1               | 2         | 2   |  |
| 1b   | 2    | 2                             | 3        | 3       | 1        | 1               | 2         | 2   |  |
| 2b   | 4    | 4                             | 5        | 6       | 2        | 3               | 3         | 4   |  |

Quanto aos fatores de importância das variáveis aleatórias observa-se, para as situações onde os fatores de modelagem não são considerados (Tabelas 5.36 e 5.38), que na função de estado que avalia o esmagamento das bielas  $G_2$ , a variável aleatória  $f_c$  influencia bem menos para a seção reforçada, enquanto  $V_q$  influencia mais, pois a carga acidental foi acrescida e o valor da resistência do concreto continuou o mesmo.

Nas funções de estado que avaliam a tração diagonal, devido à ruptura do reforço  $G_3$  ou devido ao descolamento do reforço  $G_4$ , somente o fator de importância de  $V_a$  é significativo.

Estas funções de estado ( $G_3 \in G_4$ ) dependem do modelo, ou prescrição, adotados para efetuar o cálculo da parcela de força cortante  $V_f$  resistida pelo reforço, conforme já mencionado no item 4.2.4.2. Os valores obtidos para os fatores de importância das variáveis aleatórias permitem avaliar se o modelo proposto por CHEN e TENG (2003 a, b) e as prescrições do Bulletin 14 *fib* (2001) tratam as variáveis aleatórias da mesma forma.

Na função de estado que avalia a tração diagonal devido à ruptura do reforço  $G_3$ , observa-se que as variáveis aleatórias  $f_c$  e  $f_f$  têm influências diferentes, no modelo proposto por CHEN e TENG (2003 a, b) e nas prescrições do Bulletin 14 *fib* (2001). Enquanto o modelo proposto por CHEN e TENG (2003 a, b) dá importância maior à variável  $f_f$  do que à variável  $f_c$ , nas prescrições do Bulletin 14 *fib* (2001) ocorre o contrário. A importância da variável aleatória  $f_f$  aumenta de acordo com o aumento da taxa geométrica de reforço utilizada.

A função  $G_3$  avalia a tração diagonal devido à ruptura do reforço, portanto é mais coerente que a variável aleatória da resistência à tração do compósito  $f_f$  tenha importância maior do que  $f_c$ , como propõe o modelo proposto por CHEN e TENG (2003 a, b).

138

|                                 | £         |        | Fa             | tores de | e Impor        | tância (% | %)    |
|---------------------------------|-----------|--------|----------------|----------|----------------|-----------|-------|
| Caso ír<br>1a<br>2a<br>1b<br>2b | Indice    | Modelo | f <sub>c</sub> | $f_{yw}$ | f <sub>f</sub> | $V_g$     | $V_q$ |
|                                 | $\beta_2$ | -      | 31,09          | -        | -              | 0,64      | 68,27 |
|                                 | ß         | Chen   | 1,76           | 0,50     | 0,58           | 1,02      | 96,14 |
| 1a                              | $\rho_3$  | fib    | 3,67           | 0,53     | 0,52           | 1,07      | 94,21 |
|                                 | ß         | Chen   | 4,75           | 0,79     | -              | 1,60      | 92,86 |
|                                 | $p_4$     | fib    | 5,68           | 0,79     | -              | 1,60      | 91,93 |
|                                 | $\beta_2$ | -      | 21,96          | -        | -              | 0,04      | 78,00 |
|                                 | 0         | Chen   | 0,37           | 0,10     | 2,28           | 0,02      | 97,23 |
| 2a                              | $\beta_3$ | fib    | 2,23           | 0,13     | 1,43           | 0,03      | 96,18 |
|                                 | P         | Chen   | 2,83           | 0,29     | -              | 0,06      | 96,82 |
|                                 | $p_4$     | fib    | 3,69           | 0,29     | -              | 0,06      | 95,96 |
|                                 | $\beta_2$ | -      | 27,76          | -        | -              | 0,48      | 71,76 |
|                                 | ß         | Chen   | 0,56           | 0,16     | 2,60           | 0,31      | 96,37 |
| 1b                              | $\rho_3$  | fib    | 2,84           | 0,19     | 1,66           | 0,39      | 94,92 |
|                                 | ß         | Chen   | 4,00           | 0,45     | -              | 0,90      | 94,65 |
|                                 | $p_4$     | fib    | 5,12           | 0,45     | -              | 0,90      | 93,53 |
|                                 | $\beta_2$ | -      | 20,68          | -        | -              | 0,03      | 79,29 |
|                                 | 0         | Chen   | 0,13           | 0,04     | 4,90           | 0,01      | 94,92 |
| 2b                              | $p_3$     | fib    | 2,22           | 0,07     | 3,08           | 0,01      | 94,62 |
|                                 | ß         | Chen   | 2,77           | 0,20     | -              | 0,05      | 96,98 |
|                                 | $P_4$     | fib    | 3,68           | 0,20     | -              | 0,04      | 96,08 |

Tabela 5.36 – Fatores de importância das variáveis aleatórias do quinto exemplo para os modos de falha, utilizando o tecido <u>Wabo®MBrace CF-130</u>, sem considerar os fatores de modelagem.

Na função de estado que avalia a tração diagonal devido ao descolamento do reforço  $G_4$ , observa-se que apesar das formulações apresentadas no modelo proposto por CHEN e TENG (2003 a, b) e nas prescrições do Bulletin 14 *fib* (2001) serem muito diferentes, elas dão importâncias semelhantes às variáveis que foram consideradas como aleatórias.

Quando os fatores de modelagem são considerados, os fatores de importância das demais variáveis aleatórias diminuem (Tabelas 5.37 e 5.39). A variável aleatória  $V_q$  é a que mais reduz sua importância.

| -    | ć                     |        |                | Fa       | atores de      | e Importâ | incia (%) |            |                |
|------|-----------------------|--------|----------------|----------|----------------|-----------|-----------|------------|----------------|
| Caso | Indice                | Modelo | f <sub>c</sub> | $f_{yw}$ | f <sub>f</sub> | $V_g$     | $V_q$     | $\phi_{R}$ | $\phi_{\rm S}$ |
|      | $\beta_2$             | -      | 14,23          | -        | -              | 0,82      | 29,73     | 47,43      | 7,79           |
|      | ß                     | Chen   | 0,24           | 0,07     | 0,56           | 0,73      | 36,46     | 53,21      | 8,73           |
| 1a   | $\rho_3$              | fib    | 1,23           | 0,09     | 0,47           | 0,83      | 35,18     | 53,43      | 8,77           |
|      | ß                     | Chen   | 2,02           | 0,23     | -              | 1,30      | 29,73     | 57,31      | 9,41           |
|      | <i>P</i> <sub>4</sub> | fib    | 2,58           | 0,23     | -              | 1,30      | 29,51     | 57,02      | 9,36           |
|      | $\beta_2$             | -      | 11,18          | -        | -              | 0,04      | 45,03     | 37,58      | 6,17           |
|      | ß                     | Chen   | 0,07           | 0,02     | 0,73           | 0,02      | 48,45     | 43,56      | 7,15           |
| 2a   | $\rho_3$              | fib    | 0,85           | 0,03     | 0,56           | 0,03      | 49,23     | 42,35      | 6,95           |
| _0.  | ß                     | Chen   | 1,46           | 0,12     | -              | 0,06      | 49,50     | 41,97      | 6,89           |
|      | $\rho_4$              | fib    | 1,93           | 0,12     | -              | 0,06      | 49,25     | 41,78      | 6,86           |
|      | $\beta_2$             | -      | 13,52          | -        | -              | 0,57      | 33,17     | 45,30      | 7,44           |
|      | ß                     | Chen   | 0,07           | 0,02     | 0,92           | 0,30      | 40,85     | 49,69      | 8,15           |
| 1b   | $\rho_3$              | fib    | 0,98           | 0,03     | 0,71           | 0,38      | 40,49     | 49,32      | 8,09           |
|      | ß                     | Chen   | 1,82           | 0,15     | -              | 0,77      | 35,78     | 52,81      | 8,67           |
|      | $\rho_4$              | fib    | 2,43           | 0,15     | -              | 0,76      | 35,51     | 52,53      | 8,62           |
|      | $\beta_2$             | -      | 11,04          | -        | -              | 0,03      | 45,58     | 37,24      | 6,11           |
|      | ß                     | Chen   | 0,02           | 0,01     | 1,11           | 0,01      | 46,58     | 44,90      | 7,37           |
| 2b   | $\rho_3$              | fib    | 0,78           | 0,01     | 0,75           | 0,02      | 48,83     | 42,62      | 6,99           |
|      | ß                     | Chen   | 1,44           | 0,08     | -              | 0,04      | 50,34     | 41,32      | 6,78           |
|      | $P_4$                 | fib    | 1,93           | 0,09     | -              | 0,04      | 50,08     | 41,11      | 6,75           |

Tabela 5.37 – Fatores de importância das variáveis aleatórias do quinto exemplo para os modos de falha, utilizando o tecido <u>Wabo®MBrace CF-130</u>, considerando os fatores de modelagem.



Figura 5.14 – Gráfico representando a importância de cada variável aleatória para o modo de falha avaliado em  $G_3$ , para o Caso 1b apresentado na Tabela 5.38.

| ~    | $ \begin{array}{c c c c c } & & & & & & & & & & & & & & & & & & &$ |        | Fatores de Importância (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                |       |       |  |
|------|--------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------|-------|--|
| Caso | Indice                                                             | Modelo | Fator           f_c $f_j$ 31,09         0           en         2,29         0           b         4,17         0           en         4,79         0           b         5,67         0           en         0,61         0           b         2,196         0           en         0,61         0           b         2,17         0           en         2,82         0           b         3,69         0           en         0,98         0           b         2,97         0           en         3,98         0           b         5,12         0           b         2,068         0           en         0,26         0           b         2,00         0           en         2,75         0           b         3,68         0 | $f_{yw}$ | f <sub>f</sub> | $V_g$ | $V_q$ |  |
|      | $\beta_2$                                                          | -      | 31,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | -              | 0,64  | 68,27 |  |
|      | ρ                                                                  | Chen   | 2,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,65     | 0,45           | 1,32  | 95,29 |  |
| 1a   | $\rho_3$                                                           | fib    | 4,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,77     | 0,30           | 1,57  | 93,19 |  |
|      | 0                                                                  | Chen   | 4,79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,79     | -              | 1,60  | 92,82 |  |
| _    | $p_4$                                                              | fib    | 5,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,79     | -              | 1,59  | 91,95 |  |
|      | $\beta_2$                                                          | -      | 21,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | -              | 0,04  | 78,00 |  |
|      | 0                                                                  | Chen   | 0,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,17     | 1,16           | 0,04  | 98,02 |  |
| 2a   | $p_3$                                                              | fib    | 2,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,20     | 0,82           | 0,05  | 96,76 |  |
|      | 0                                                                  | Chen   | 2,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,29     | -              | 0,06  | 96,83 |  |
|      | $p_4$                                                              | fib    | 3,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,29     | -              | 0,06  | 95,96 |  |
|      | $\beta_2$                                                          | -      | 27,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | -              | 0,48  | 71,76 |  |
|      | 0                                                                  | Chen   | 0,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,27     | 1,25           | 0,55  | 96,95 |  |
| 1b   | $\rho_3$                                                           | fib    | 2,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,32     | 0,95           | 0,65  | 95,11 |  |
|      | 0                                                                  | Chen   | 3,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,45     | -              | 0,90  | 94,67 |  |
| _    | $p_4$                                                              | fib    | 5,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,45     | -              | 0,90  | 93,53 |  |
|      | $\beta_2$                                                          | -      | 20,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | -              | 0,03  | 79,29 |  |
|      | 0                                                                  | Chen   | 0,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,07     | 3,79           | 0,02  | 95,86 |  |
| 2b   | $p_3$                                                              | fib    | 2,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,11     | 1,55           | 0,02  | 96,32 |  |
|      | ρ                                                                  | Chen   | 2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,20     | -              | 0,04  | 97,01 |  |
|      | $\rho_4$                                                           | fib    | 3,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,20     | -              | 0,04  | 96,08 |  |

Tabela 5.38 – Fatores de importância das variáveis aleatórias do quinto exemplo para os modos de falha, utilizando o tecido <u>Wabo®MBrace CF-530</u>, sem considerar os fatores de modelagem.

O fator de modelagem  $\phi_R$  é a variável aleatória que apresenta maior fator de importância nos Casos 1a e 1b, onde 75% da carga total é de natureza permanente. Nos Casos 2a e 2b, onde 75% da carga total é de natureza acidental,  $V_q$  continua apresentando fator de importância maior, porém a importância de  $\phi_R$ , nestes casos, é bem próxima da importância apresentada por  $V_q$ .



Figura 5.15 – Gráfico representando a importância de cada variável aleatória para o modo de falha avaliado em  $G_4$ , para o Caso 1b apresentado na Tabela 5.39.

Tabela 5.39 – Fatores de importância das variáveis aleatórias do quinto exemplo para os modos de falha, utilizando o tecido <u>Wabo®MBrace CF-530</u>, considerando os fatores de modelagem.

|      | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                | Fa      | atores de | e Importâ | incia (%)     |       |      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|---------|-----------|-----------|---------------|-------|------|
| Caso | $ \begin{array}{ c c c c c } \hline $ \mbox{Modelo} & \hline $ f_c & f_{yw} \\ \hline $ \beta_2 & - & 14,23 & - \\ \hline $ \beta_3 & \hline $ Chen & 0,52 & 0,14 \\ \hline $ \beta_3 & \hline $ fib & 1,49 & 0,17 \\ \hline $ \beta_4 & \hline $ fib & 2,58 & 0,23 \\ \hline $ \beta_4 & \hline $ fib & 2,58 & 0,23 \\ \hline $ \beta_2 & - & 11,18 & - \\ \hline $ \beta_3 & \hline $ fib & 0,96 & 0,06 \\ \hline $ \beta_4 & \hline $ fib & 0,96 & 0,06 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,12 \\ \hline $ \beta_2 & - & 13,52 & - \\ \hline $ \beta_3 & \hline $ fib & 1,14 & 0,07 \\ \hline $ \beta_3 & \hline $ fib & 1,14 & 0,07 \\ \hline $ \beta_4 & \hline $ fib & 1,14 & 0,07 \\ \hline $ \beta_4 & \hline $ fib & 1,14 & 0,07 \\ \hline $ \beta_4 & \hline $ fib & 1,14 & 0,07 \\ \hline $ \beta_4 & \hline $ fib & 2,43 & 0,15 \\ \hline $ \beta_2 & - & 11,04 & - \\ \hline $ \beta_3 & \hline $ fib & 0,84 & 0,03 \\ \hline $ \beta_4 & \hline $ fib & 0,84 & 0,03 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ fib & 1,93 & 0,05 \\ \hline $ \beta_4 & \hline $ $ | $f_{yw}$ | f <sub>f</sub> | $V_{g}$ | $V_q$     | $\phi_R$  | $\phi_{ m S}$ |       |      |
|      | $\beta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | 14,23          | -       | -         | 0,82      | 29,73         | 47,43 | 7,79 |
|      | ß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chen     | 0,52           | 0,14    | 0,42      | 1,03      | 33,37         | 55,42 | 9,10 |
| 1a   | $\rho_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fib      | 1,49           | 0,17    | 0,35      | 1,12      | 31,98         | 55,74 | 9,15 |
|      | ß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chen     | 2,01           | 0,23    | -         | 1,30      | 29,74         | 57,31 | 9,41 |
|      | <i>P</i> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fib      | 2,58           | 0,23    | -         | 1,30      | 29,51         | 57,02 | 9,36 |
|      | $\beta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | 11,18          | -       | -         | 0,04      | 45,03         | 37,58 | 6,17 |
|      | ß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chen     | 0,15           | 0,04    | 0,64      | 0,03      | 49,90         | 42,30 | 6,94 |
| 2a   | $p_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fib      | 0,96           | 0,06    | 0,47      | 0,04      | 49,96         | 41,67 | 6,84 |
|      | ß.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chen     | 1,46           | 0,12    | -         | 0,06      | 49,49         | 41,98 | 6,89 |
|      | $P_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fib      | 1,93           | 0,12    | -         | 0,06      | 49,25         | 41,78 | 6,86 |
|      | $\beta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | 13,52          | -       | -         | 0,57      | 33,17         | 45,30 | 7,44 |
|      | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chen     | 0,16           | 0,04    | 0,83      | 0,42      | 40,51         | 49,86 | 8,18 |
| 1b   | $\rho_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fib      | 1,14           | 0,07    | 0,61      | 0,54      | 38,98         | 50,39 | 8,27 |
|      | ß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chen     | 1,83           | 0,15    | -         | 0,77      | 35,78         | 52,80 | 8,67 |
|      | $P_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fib      | 2,43           | 0,15    | -         | 0,76      | 35,51         | 52,53 | 8,62 |
|      | $\beta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | 11,04          | -       | -         | 0,03      | 45,58         | 37,24 | 6,11 |
|      | ß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chen     | 0,05           | 0,01    | 1,04      | 0,02      | 48,94         | 42,90 | 7,04 |
| 2b   | $\rho_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fib      | 0,84           | 0,03    | 0,67      | 0,02      | 50,32         | 41,34 | 6,78 |
| -    | ß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chen     | 1,44           | 0,08    | -         | 0,04      | 50,34         | 41,32 | 6,78 |
|      | $P_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fib      | 1,93           | 0,09    | -         | 0,04      | 50,08         | 41,11 | 6,75 |

A variável aleatória  $\phi_R$  tem importância significativa devido aos valores elevados de seu coeficiente de variação (CoV = 25%) e de sua média ( $\mu_{\phi_R} = 1,4$ ). A variável aleatória  $\phi_S$  apresenta importância significativa, porém bem menor do que a apresentada por  $\phi_R$ , devido aos valores de seu coeficiente de variação (CoV = 10%) e de sua média ( $\mu_{\phi_R} = 1,0$ ) serem menores.

As tabelas, a seguir, apresentam as coordenadas do ponto de projeto obtido para cada situação analisada. Verifica-se que, quando os fatores de modelagem não são considerados (Tabelas 5.41 e 5.43), a variável aleatória  $f_c$ assume valores menores do que seu valor característico (Tabela 5.40) nos pontos de projeto obtidos para a função de estado que avalia o esmagamento das bielas  $G_2$ . Nos pontos de projeto obtidos para as demais funções de estado  $(G_3 e G_4)$  ocorre o contrário,  $f_c > 20 MPa$ .

Quando os fatores de modelagem são considerados (Tabelas 5.42 e 5.44),  $f_c$  só assume valor menor do que seu valor característico no ponto de projeto obtido para o Caso 1a para a função de estado que avalia o esmagamento das bielas  $G_2$ .

As variáveis aleatórias  $f_{yw}$ ,  $f_f$ ,  $V_g$  e  $V_q$  assumem valores maiores do que seus valores característicos nos pontos de projeto obtidos para todas as situações analisadas. Estas variáveis aleatórias têm seus valores mais próximos dos valores característicos quando o ponto de projeto é obtido para a função de estado  $G_4$  que é o modo de falha que comanda o dimensionamento de  $\rho_f$ .

A variável aleatória  $\phi_R$  (Tabelas 5.42 e 5.44) assume sempre valores bem menores do que seu valor característico, sendo que para a função de estado  $G_4$  o valor obtido no ponto de projeto para  $\phi_R$  é um pouco maior do que os valores obtidos para as demais funções de estado.

A variável aleatória  $\phi_{S}$  assume em todas as situações valores maiores do que seu valor característico, sendo que para a função de estado  $G_4$ o valor obtido no ponto de projeto para  $\phi_{S}$  é um pouco menor do que os valores obtidos para as demais funções de estado.

|      | Va                      | Valores característicos das variáveis aleatórias |                         |                        |                        |          |                |  |  |  |
|------|-------------------------|--------------------------------------------------|-------------------------|------------------------|------------------------|----------|----------------|--|--|--|
| Caso | f <sub>c</sub><br>(MPa) | f <sub>yw</sub><br>(MPa)                         | f <sub>f</sub><br>(MPa) | V <sub>g</sub><br>(kN) | V <sub>q</sub><br>(kN) | $\phi_R$ | $\phi_{\rm S}$ |  |  |  |
| 1a   |                         |                                                  | 3790                    | 71,18                  | 71,18                  |          |                |  |  |  |
| 2a   | 20                      | 500                                              | (CF130)                 | 23,73                  | 118,63                 | 1 /      | 1.0            |  |  |  |
| 1b   | 20                      | 500                                              | 3517                    | 71,18                  | 94,91                  | 1,4      | 1,0            |  |  |  |
| 2b   |                         |                                                  | (CF530)                 | 23,73                  | 142,36                 |          |                |  |  |  |

Tabela 5.40 – Valores característicos das variáveis aleatórias no quinto exemplo.

Tabela 5.41 – Coordenadas do ponto de projeto do quinto exemplo para os modos de falha, utilizando o tecido <u>Wabo®MBrace CF-130</u>, sem considerar os fatores de modelagem.

|      |           |        | C                       | coordenad                | las do Por              | nto de Proj            | eto                    |
|------|-----------|--------|-------------------------|--------------------------|-------------------------|------------------------|------------------------|
| Caso | Índice    | Modelo | f <sub>c</sub><br>(MPa) | f <sub>yw</sub><br>(MPa) | f <sub>f</sub><br>(MPa) | V <sub>g</sub><br>(kN) | V <sub>q</sub><br>(kN) |
|      | $\beta_2$ | -      | 15,7                    | -                        | -                       | 74,71                  | 282,09                 |
|      | 0         | Chen   | 23,9                    | 549                      | 4242                    | 74,69                  | 257,92                 |
| 1a   | $\rho_3$  | fib    | 23,0                    | 549                      | 4247                    | 74,68                  | 245,20                 |
|      | 0         | Chen   | 23,2                    | 549                      | -                       | 74,60                  | 187,83                 |
| _    | $\rho_4$  | fib    | 23,0                    | 549                      | -                       | 74,60                  | 186,85                 |
|      | $\beta_2$ | -      | 18,5                    | -                        | -                       | 23,96                  | 391,74                 |
|      | $\beta_3$ | Chen   | 24,8                    | 553                      | 4132                    | 23,96                  | 675,28                 |
| 2a   |           | fib    | 23,0                    | 553                      | 4186                    | 23,96                  | 566,25                 |
|      | ß         | Chen   | 23,9                    | 553                      | -                       | 23,96                  | 320,10                 |
|      | $p_4$     | fib    | 23,6                    | 553                      | -                       | 23,96                  | 318,58                 |
|      | $\beta_2$ | -      | 17,3                    | -                        | -                       | 73,80                  | 317,54                 |
|      | 0         | Chen   | 24,4                    | 551                      | 4117                    | 73,86                  | 539,23                 |
| 1b   | $\rho_3$  | fib    | 22,6                    | 551                      | 4175                    | 73,84                  | 453,84                 |
|      | ρ         | Chen   | 23,5                    | 552                      | -                       | 73,75                  | 252,99                 |
|      | $p_4$     | fib    | 23,1                    | 552                      | -                       | 73,75                  | 251,41                 |
|      | $\beta_2$ | -      | 19,4                    | -                        | -                       | 23,92                  | 411,20                 |
|      | ß         | Chen   | 25,2                    | 555                      | 4046                    | 23,97                  | 1108,05                |
| 2b   | $\rho_3$  | fib    | 22,5                    | 554                      | 4090                    | 23,92                  | 840,97                 |
| -    | ß         | Chen   | 24,0                    | 554                      | -                       | 23,94                  | 378,88                 |
|      | $\rho_4$  | fib    | 23,6                    | 554                      | -                       | 23,92                  | 382,57                 |

|           |           |        | Coordenadas do Ponto de Projeto |                          |                         |                        |                        |          |                |  |
|-----------|-----------|--------|---------------------------------|--------------------------|-------------------------|------------------------|------------------------|----------|----------------|--|
| Caso      | Índice    | Modelo | f <sub>c</sub><br>(MPa)         | f <sub>yw</sub><br>(MPa) | f <sub>f</sub><br>(MPa) | V <sub>g</sub><br>(kN) | V <sub>q</sub><br>(kN) | $\phi_R$ | $\phi_{\rm S}$ |  |
|           | $\beta_2$ | -      | 19,7                            | -                        | -                       | 74,47                  | 145,32                 | 0,57     | 1,15           |  |
|           | ß         | Chen   | 25,2                            | 555                      | 4235                    | 74,58                  | 172,81                 | 0,50     | 1,17           |  |
| 1a        | $\rho_3$  | fib    | 24,1                            | 555                      | 4245                    | 74,54                  | 157,89                 | 0,53     | 1,16           |  |
|           | ß         | Chen   | 24,2                            | 554                      | -                       | 74,29                  | 117,62                 | 0,67     | 1,12           |  |
|           | $\rho_4$  | fib    | 24,0                            | 554                      | -                       | 74,28                  | 117,35                 | 0,67     | 1,12           |  |
| $\beta_2$ | -         | 21,0   | -                               | -                        | 23,95                   | 262,21                 | 0,68                   | 1,11     |                |  |
|           | ß         | Chen   | 25,6                            | 557                      | 4215                    | 23,96                  | 389,12                 | 0,48     | 1,18           |  |
| 2a        | $\rho_3$  | fib    | 24,3                            | 556                      | 4235                    | 23,96                  | 339,95                 | 0,55     | 1,15           |  |
|           | ß.        | Chen   | 24,6                            | 555                      | -                       | 23,94                  | 234,38                 | 0,74     | 1,10           |  |
|           | $\rho_4$  | fib    | 24,3                            | 555                      | -                       | 23,94                  | 233,91                 | 0,74     | 1,10           |  |
|           | $\beta_2$ | -      | 20,5                            | -                        | -                       | 73,62                  | 184,94                 | 0,64     | 1,13           |  |
|           | ß         | Chen   | 25,6                            | 556                      | 4198                    | 73,79                  | 299,20                 | 0,42     | 1,20           |  |
| 1b        | $\rho_3$  | fib    | 24,1                            | 556                      | 4223                    | 73,76                  | 256,06                 | 0,49     | 1,18           |  |
|           | ß         | Chen   | 24,4                            | 555                      | -                       | 73,55                  | 166,65                 | 0,69     | 1,11           |  |
|           | Ρ4        | fib    | 24,1                            | 555                      | -                       | 73,55                  | 166,23                 | 0,69     | 1,11           |  |
|           | $\beta_2$ | -      | 21,4                            | -                        | -                       | 23,91                  | 291,26                 | 0,73     | 1,10           |  |
|           | ß         | Chen   | 25,9                            | 558                      | 4172                    | 23,92                  | 565,21                 | 0,39     | 1,22           |  |
| 2b        | $\rho_3$  | fib    | 24,2                            | 557                      | 4216                    | 23,92                  | 454,80                 | 0,50     | 1,17           |  |
|           | ß         | Chen   | 24,6                            | 556                      | -                       | 23,91                  | 283,32                 | 0,74     | 1,10           |  |
|           | $P_4$     | fib    | 24,3                            | 556                      | -                       | 23,91                  | 282,67                 | 0,74     | 1,10           |  |

Tabela 5.42 – Coordenadas do ponto de projeto do quinto exemplo para os modos de falha, utilizando o tecido <u>Wabo®MBrace CF-130</u>, considerando os fatores de modelagem.

|      |           |        | C              | Coordenac | las do Por     | nto de Proj | eto    |
|------|-----------|--------|----------------|-----------|----------------|-------------|--------|
| Caso | Índice    | Modelo | f <sub>c</sub> | $f_{yw}$  | f <sub>f</sub> | $V_g$       | $V_q$  |
|      |           |        | (MPa)          | (MPa)     | (MPa)          | (kN)        | (kN)   |
|      | $\beta_2$ | -      | 15,7           | -         | -              | 74,71       | 282,09 |
|      | ß         | Chen   | 23,9           | 549       | 4006           | 74,65       | 215,16 |
| 1a   | $\rho_3$  | fib    | 23,4           | 549       | 4018           | 74,61       | 190,89 |
|      | ß         | Chen   | 23,2           | 549       | -              | 74,60       | 187,79 |
|      | $\rho_4$  | fib    | 23,0           | 549       | -              | 74,60       | 187,34 |
|      | $\beta_2$ | -      | 18,5           | -         | -              | 23,96       | 391,74 |
|      | ße        | Chen   | 24,8           | 553       | 3961           | 23,96       | 463,32 |
| 2a   | $\rho_3$  | fib    | 23,8           | 553       | 3985           | 23,96       | 401,28 |
|      | ρ         | Chen   | 23,9           | 553       | -              | 23,96       | 320,13 |
|      | $p_4$     | fib    | 23,6           | 553       | -              | 23,96       | 318,58 |
|      | $\beta_2$ | -      | 17,3           | -         | -              | 73,80       | 317,54 |
|      | ρ         | Chen   | 24,4           | 551       | 3960           | 73,82       | 354,86 |
| 1b   | $\rho_3$  | fib    | 23,4           | 551       | 3980           | 73,80       | 314,01 |
|      | ρ         | Chen   | 23,5           | 552       | -              | 73,75       | 253,03 |
| _    | $p_4$     | fib    | 23,1           | 552       | -              | 73,75       | 251,41 |
|      | $\beta_2$ | -      | 19,41          | -         | -              | 23,92       | 411,20 |
|      | ρ         | Chen   | 25,00          | 554       | 3815           | 23,92       | 790,24 |
| 2b   | $p_3$     | fib    | 23,53          | 554       | 3943           | 23,92       | 568,91 |
| -~   | ß         | Chen   | 23,94          | 554       | -              | 23,92       | 384,56 |
|      | $\beta_4$ | fib    | 23,59          | 554       | -              | 23,92       | 382,57 |

Tabela 5.43 – Coordenadas do ponto de projeto do quinto exemplo para os modos de falha, utilizando o tecido <u>Wabo®MBrace CF-530</u>, sem considerar os fatores de modelagem.

|           |            |        |                         | Coord                    | denadas o               | lo Ponto               | de Projeto             | )        |                |
|-----------|------------|--------|-------------------------|--------------------------|-------------------------|------------------------|------------------------|----------|----------------|
| Caso      | Índice     | Modelo | f <sub>c</sub><br>(MPa) | f <sub>yw</sub><br>(MPa) | f <sub>f</sub><br>(MPa) | V <sub>g</sub><br>(kN) | V <sub>q</sub><br>(kN) | $\phi_R$ | $\phi_{\rm S}$ |
|           | $\beta_2$  | -      | 19,7                    | -                        | -                       | 74,47                  | 145,32                 | 0,57     | 1,15           |
|           | ß          | Chen   | 25,1                    | 554                      | 4005                    | 74,44                  | 137,58                 | 0,59     | 1,14           |
| 1a        | $\rho_3$   | fib    | 24,3                    | 554                      | 4012                    | 74,39                  | 129,86                 | 0,62     | 1,13           |
|           | ß          | Chen   | 24,3                    | 554                      | -                       | 74,29                  | 117,62                 | 0,67     | 1,12           |
|           | $\rho_4$   | fib    | 24,0                    | 554                      | -                       | 74,28                  | 117,35                 | 0,67     | 1,12           |
| $\beta_2$ | -          | 21,0   | -                       | -                        | 23,95                   | 262,21                 | 0,68                   | 1,11     |                |
|           | 0          | Chen   | 25,5                    | 556                      | 3984                    | 23,96                  | 319,02                 | 0,58     | 1,14           |
| 2a        | $p_3$      | fib    | 24,6                    | 556                      | 4002                    | 23,95                  | 279,16                 | 0,65     | 1,12           |
|           | ß          | Chen   | 24,6                    | 555                      | -                       | 23,94                  | 234,37                 | 0,74     | 1,10           |
|           | <i>P</i> 4 | fib    | 24,3                    | 555                      | -                       | 23,94                  | 233,91                 | 0,74     | 1,10           |
|           | $\beta_2$  | -      | 20,5                    | -                        | -                       | 73,62                  | 184,94                 | 0,64     | 1,13           |
|           | 0          | Chen   | 25,4                    | 556                      | 3970                    | 73,74                  | 239,37                 | 0,52     | 1,16           |
| 1b        | $\rho_3$   | fib    | 24,4                    | 555                      | 3992                    | 73,68                  | 204,82                 | 0,59     | 1,14           |
|           | ß          | Chen   | 24,4                    | 555                      | -                       | 73,55                  | 166,65                 | 0,69     | 1,11           |
|           | $\rho_4$   | fib    | 24,1                    | 555                      | -                       | 73,55                  | 166,23                 | 0,69     | 1,11           |
|           | $\beta_2$  | -      | 21,4                    | -                        | -                       | 23,91                  | 291,26                 | 0,73     | 1,10           |
|           | 0          | Chen   | 25,7                    | 557                      | 3946                    | 23,92                  | 460,29                 | 0,50     | 1,17           |
| 2b        | <i>P</i> 3 | fib    | 24,5                    | 556                      | 3985                    | 23,92                  | 368,27                 | 0,61     | 1,13           |
|           | ß          | Chen   | 24,6                    | 556                      | -                       | 23,91                  | 283,32                 | 0,74     | 1,10           |
|           | $P_4$      | fib    | 24,3                    | 556                      | -                       | 23,91                  | 282,67                 | 0,74     | 1,10           |

Tabela 5.44 – Coordenadas do ponto de projeto do quinto exemplo para os modos de falha, utilizando o tecido <u>Wabo®MBrace CF-530</u>, considerando os fatores de modelagem.

A seguir são apresentadas tabelas com valores dos fatores parciais de segurança para as variáveis consideradas como aleatórias.

Os fatores parciais de segurança são calculados para o modo de falha que comanda o dimensionamento da taxa geométrica de reforço. Em todas as situações analisadas  $G_4$  é a função de estado que avalia o modo de falha que apresenta maior probabilidade de falha e menor índice de confiabilidade. A variável aleatória  $f_f$  não é considerada nesta função de falha.

|      |           |        | F                                     | Fatores Par                   | ciais de      | Seguran                                      | ça                                           |
|------|-----------|--------|---------------------------------------|-------------------------------|---------------|----------------------------------------------|----------------------------------------------|
| Caso | Índice    | Modelo | f <sub>ck</sub> /<br>f <sub>c</sub> * | $f_{ywk}$<br>$f_{yw}^{\star}$ | $f_f / f_f^*$ | V <sup>*</sup> <sub>g</sub> /V <sub>gk</sub> | V <sup>*</sup> <sub>q</sub> /V <sub>qk</sub> |
| 10   |           | Chen   | 0,86                                  | 0,91                          | -             | 1,05                                         | 2,64                                         |
| Id   |           | fib    | 0,87                                  | 0,91                          | -             | 1,05                                         | 2,62                                         |
| 20   |           | Chen   | 0,84                                  | 0,90                          | -             | 1,01                                         | 2,70                                         |
| Za   | $\beta_4$ | fib    | 0,85                                  | 0,90                          | -             | 1,01                                         | 2,68                                         |
| 16   |           | Chen   | 0,85                                  | 0,91                          | -             | 1,04                                         | 2,66                                         |
| 10   |           | fib    | 0,86                                  | 0,91                          | -             | 1,04                                         | 2,65                                         |
| 2b   |           | Chen   | 0,83                                  | 0,90                          | -             | 1,01                                         | 2,66                                         |
|      |           | fib    | 0,85                                  | 0,90                          | -             | 1,01                                         | 2,69                                         |

Tabela 5.46 – Fatores parciais de segurança do quinto exemplo para o modo de falha preponderante, utilizando o tecido <u>Wabo®MBrace CF-130</u>, considerando os fatores de modelagem.

|      |           |        | Fatores Parciais de Segurança         |           |               |                                              |                                              |              |                                      |  |
|------|-----------|--------|---------------------------------------|-----------|---------------|----------------------------------------------|----------------------------------------------|--------------|--------------------------------------|--|
| Caso | Índice    | Modelo | f <sub>ck</sub> /<br>f <sub>c</sub> * | $f_{ywk}$ | $f_f / f_f^*$ | V <sub>g</sub> <sup>*</sup> /V <sub>gk</sub> | V <sub>q</sub> <sup>*</sup> /V <sub>qk</sub> | $\phi_{Rk}/$ | $\phi_{\rm S}^{\star}/\phi_{\rm Sk}$ |  |
| 1a   |           | Chen   | 0,82                                  | 0,90      | -             | 1,04                                         | 1,65                                         | 2,10         | 1,12                                 |  |
|      | $\beta_4$ | fib    | 0,83                                  | 0,90      | -             | 1,04                                         | 1,65                                         | 2,09         | 1,12                                 |  |
| 2a   |           | Chen   | 0,81                                  | 0,90      | -             | 1,01                                         | 1,98                                         | 1,89         | 1,10                                 |  |
|      |           | fib    | 0,82                                  | 0,90      | -             | 1,01                                         | 1,97                                         | 1,89         | 1,10                                 |  |
| 1b   |           | Chen   | 0,82                                  | 0,90      | -             | 1,03                                         | 1,76                                         | 2,03         | 1,11                                 |  |
|      |           | fib    | 0,83                                  | 0,90      | -             | 1,03                                         | 1,75                                         | 2,03         | 1,11                                 |  |
| 2b   |           | Chen   | 0,81                                  | 0,90      | -             | 1,01                                         | 1,99                                         | 1,88         | 1,10                                 |  |
|      |           | fib    | 0,82                                  | 0,90      | -             | 1,01                                         | 1,98                                         | 1,88         | 1,10                                 |  |

Os valores apresentados nas Tabelas 5.45 a 5.48 indicam que, para dimensionar o reforço pelo enfoque semi-probabilístico tendo como requisito o valor do índice de confiabilidade de referência  $\beta_r = 3.8$ , devem ser considerados no projeto estrutural os seguintes valores de projeto para as resistências, as solicitações e os fatores de modelagem:

valor de projeto para a resistência à compressão do concreto maior do que seu valor característico, em torno de 18% quando não são considerados os fatores de modelagem e 22% quando são considerados;

Tabela 5.47 – Fatores parciais de segurança do quinto exemplo para o modo de falha preponderante, utilizando o tecido <u>Wabo®MBrace CF-530</u>, sem considerar os fatores de modelagem.

|            |           |        | Fatores Parciais de Segurança         |                           |               |                                              |                                              |  |  |
|------------|-----------|--------|---------------------------------------|---------------------------|---------------|----------------------------------------------|----------------------------------------------|--|--|
| Caso       | Índice    | Modelo | f <sub>ck</sub> /<br>f <sub>c</sub> * | $f_{ywk}$<br>$f_{yw}^{*}$ | $f_f / f_f^*$ | V <sup>*</sup> <sub>g</sub> /V <sub>gk</sub> | V <sub>q</sub> <sup>*</sup> /V <sub>qk</sub> |  |  |
| 10         |           | Chen   | 0,86                                  | 0,91                      | -             | 1,05                                         | 2,64                                         |  |  |
| Id         |           | fib    | 0,87                                  | 0,91                      | -             | 1,05                                         | 2,63                                         |  |  |
| 2a         |           | Chen   | 0,84                                  | 0,90                      | -             | 1,01                                         | 2,70                                         |  |  |
|            | $\beta_4$ | fib    | 0,85                                  | 0,90                      | -             | 1,01                                         | 2,68                                         |  |  |
| 16         |           | Chen   | 0,85                                  | 0,91                      | -             | 1,04                                         | 2,67                                         |  |  |
| U I        |           | fib    | 0,86                                  | 0,91                      | -             | 1,04                                         | 2,65                                         |  |  |
| <b>2</b> h |           | Chen   | 0,84                                  | 0,90                      | -             | 1,01                                         | 2,70                                         |  |  |
| 20         |           | fib    | 0,85                                  | 0,90                      | -             | 1,01                                         | 2,69                                         |  |  |

Tabela 5.48 – Fatores parciais de segurança do quinto exemplo para o modo de falha preponderante, utilizando o tecido <u>Wabo®MBrace CF-530</u>, considerando os fatores de modelagem.

|      |        |        | Fatores Parciais de Segurança         |                    |               |                                                |                                              |                          |                              |
|------|--------|--------|---------------------------------------|--------------------|---------------|------------------------------------------------|----------------------------------------------|--------------------------|------------------------------|
| Caso | Índice | Modelo | f <sub>ck</sub> /<br>f <sub>c</sub> * | $f_{ywk}/f_{yw}^*$ | $f_f / f_f^*$ | V <sup>*</sup> <sub>g</sub><br>V <sub>gk</sub> | V <sub>q</sub> <sup>*</sup> /V <sub>qk</sub> | $\phi_{Rk}/\phi_{R}^{*}$ | $\phi_{S}^{\star}/\phi_{Sk}$ |
| 1a   |        | Chen   | 0,82                                  | 0,90               | -             | 1,04                                           | 1,65                                         | 2,10                     | 1,12                         |
|      | β4     | fib    | 0,83                                  | 0,90               | -             | 1,04                                           | 1,65                                         | 2,09                     | 1,12                         |
| 2a   |        | Chen   | 0,81                                  | 0,90               | -             | 1,01                                           | 1,98                                         | 1,89                     | 1,10                         |
|      |        | fib    | 0,82                                  | 0,90               | -             | 1,01                                           | 1,97                                         | 1,89                     | 1,10                         |
| 1b   |        | Chen   | 0,82                                  | 0,90               | -             | 1,03                                           | 1,76                                         | 2,03                     | 1,11                         |
|      |        | fib    | 0,83                                  | 0,90               | -             | 1,03                                           | 1,75                                         | 2,03                     | 1,11                         |
| 2b   |        | Chen   | 0,81                                  | 0,90               | -             | 1,01                                           | 1,99                                         | 1,88                     | 1,10                         |
|      |        | fib    | 0,82                                  | 0,90               | -             | 1,01                                           | 1,98                                         | 1,88                     | 1,10                         |

- valor de projeto para a resistência à tração do aço um pouco maior do que seu valor característico, em torno de 10%, para todas as situações analisadas;
- valor de projeto para as ações permanentes aproximadamente igual ao valor característico, para todas as situações analisadas;
- valor de projeto para as ações acidentais bem maior do que seu valor característico, em torno de 2,6 vezes, quando não são considerados os fatores de modelagem, e em torno de 1,8 vezes, quando são considerados;
- valor de projeto para o fator de modelagem da resistência aproximadamente 50% menor do que seu valor característico;
- valor de projeto para o fator de modelagem da solicitação aproximadamente 10% maior do que seu valor característico.

# 5.7. Sexto Exemplo

Este exemplo tem como objetivo analisar a influência do acréscimo do valor de  $f_{ck}$  no comportamento de ruptura da seção transversal.

O Caso 1a do exemplo anterior é repetido para os dois tecidos de fibras de carbono Wabo®Mbrace, sem considerar os fatores de modelagem e, também, considerando-os.

### 5.7.1.

### Considerações

A filosofia adotada, de  $V_{Rd3} = V_{Sd}$ , continua sendo considerada e de acordo com o valor de  $f_{ck}$  tem-se:

| f <sub>ck</sub> (MPa) | V <sub>c</sub> (kN) | V <sub>sw</sub> (kN) | $V_{Rd3} = V_{Sd} (kN)$ |  |  |
|-----------------------|---------------------|----------------------|-------------------------|--|--|
| 20                    | 59,68               |                      | 132,87                  |  |  |
| 25                    | 69,25               |                      | 142,44                  |  |  |
| 30                    | 78,2                | 73,19                | 151,39                  |  |  |
| 35                    | 86,67               |                      | 159,86                  |  |  |
| 40                    | 94,74               |                      | 167,93                  |  |  |

Tabela 5.49 – Valores de V<sub>c</sub>, V<sub>Rd3</sub> e V<sub>Sd</sub>, de acordo com variações de f<sub>ck</sub>.

| f <sub>ck</sub> (MPa) | V <sub>gk</sub> (kN) | V <sub>qk , inicial</sub> (kN) | $\Delta V_{qk}$ (kN) | V <sub>qk , final</sub> (kN) |
|-----------------------|----------------------|--------------------------------|----------------------|------------------------------|
| 20                    | 71,18                | 23,73                          | 47,45                | 71,18                        |
| 25                    | 76,31                | 25,44                          | 50,87                | 76,31                        |
| 30                    | 81,10                | 27,03                          | 54,07                | 81,10                        |
| 35                    | 85,64                | 28,54                          | 57,09                | 85,64                        |
| 40                    | 89,96                | 29,99                          | 59,97                | 89,96                        |

Tabela 5.50 – Acréscimos de cargas acidentais, de acordo com variações de f<sub>ck</sub>.

5.7.2.

# Modelos Probabilísticos da Resistência do Concreto à Compressão e das Solicitações

Os modelos probabilísticos das variáveis aleatórias são os mesmos utilizados no exemplo anterior, exceto os modelos de  $f_c$ ,  $V_g$  e  $V_q$  que são modificados, conforme tabela a seguir.

Tabela 5.51 – Modelos probabilísticos da resistência do concreto à compressão e das solicitações, de acordo com  $f_{ck}$ .

| f <sub>ck</sub> | Variável<br>Aleatória | Valor<br>Característico | Média | Desvio<br>Padrão | Coeficiente<br>de Variação<br>(%) | Distribuição |
|-----------------|-----------------------|-------------------------|-------|------------------|-----------------------------------|--------------|
|                 | f <sub>c</sub> (MPa)  | 20                      | 26,6  | 4                | 15,04                             | Lognormal    |
| 20              | V <sub>g</sub> (kN)   | 71,18                   | 71,18 | 7,12             | 10                                | Normal       |
|                 | V <sub>q</sub> (kN)   | 23,73                   | 23,73 | 5,93             | 25                                | Gumbel       |
|                 | f <sub>c</sub> (MPa)  | 25                      | 31,6  | 4                | 12,66                             | Lognormal    |
| 25              | V <sub>g (kN)</sub>   | 76,31                   | 76,31 | 7,63             | 10                                | Normal       |
|                 | V <sub>q</sub> (kN)   | 25,44                   | 25,44 | 6,36             | 25                                | Gumbel       |
|                 | f <sub>c</sub> (MPa)  | 30                      | 36,6  | 4                | 10,93                             | Lognormal    |
| 30              | V <sub>g</sub> (kN)   | 81,10                   | 81,10 | 8,11             | 10                                | Normal       |
|                 | V <sub>q (kN)</sub>   | 27,03                   | 27,03 | 6,76             | 25                                | Gumbel       |
|                 | f <sub>c</sub> (MPa)  | 35                      | 41,6  | 4                | 9,62                              | Lognormal    |
| 35              | V <sub>g</sub> (kN)   | 85,64                   | 85,64 | 8,56             | 10                                | Normal       |
|                 | V <sub>q</sub> (kN)   | 28,54                   | 28,54 | 7,14             | 25                                | Gumbel       |
| 40              | f <sub>c</sub> (MPa)  | 40                      | 46,6  | 4                | 8,58                              | Lognormal    |
|                 | V <sub>g</sub> (kN)   | 89,96                   | 89,96 | 9,00             | 10                                | Normal       |
|                 | V <sub>q</sub> (kN)   | 29,99                   | 29,99 | 7,50             | 25                                | Gumbel       |

### 5.7.3. Resultados

Os resultados deste exemplo são apresentados nos gráficos a seguir. A Figura 5.16 indica que para se obter valores de  $\beta_3$  e  $\beta_4$  maiores que  $\beta_r = 3,8$  é preciso aumentar o valor da taxa geométrica de reforço conforme aumento da resistência característica do concreto à compressão.

Quando é utilizado o tecido Wabo®Mbrace CF-530 precisa-se de um valor de  $\rho_{\rm f}$  menor, principalmente quando os fatores de modelagem são considerados.



Figura 5.16 – Gráfico resistência característica do concreto à compressão x taxa geométrica do reforço, do sexto exemplo.

A partir da Figura 5.17 verifica-se que os valores dos índices de confiabilidade  $\beta_2$  diminuem quando os fatores de modelagem são considerados e os valores dos índices de confiabilidade  $\beta_3$  aumentam. Quando é utilizado o tecido Wabo®Mbrace CF-130 obtêm-se valores maiores de  $\beta_3$  comparando com os valores obtidos quando se utiliza o tecido Wabo®Mbrace CF-530.

Para o tecido Wabo®Mbrace CF-130 a Figura 5.17 informa que, tanto sem considerar os fatores de modelagem quanto considerando, os valores dos índices de confiabilidade  $\beta_3$  diminuem com o aumento de  $f_{ck}$  e que  $\beta_4$  tem valor constante igual a  $\beta_r = 3.8$ . O índice de confiabilidade  $\beta_{e,série}$  assume, em todos as situações, valor igual a  $\beta_4$ . O modo de falha dominante é ruptura da alma por tração diagonal devido ao descolamento do reforço.



Figura 5.17 – Gráfico resistência característica do concreto à compressão x índices de confiabilidade ( $\beta_2$ ,  $\beta_3$  e  $\beta_4$ ), do sexto exemplo.

Para o tecido Wabo®Mbrace CF-530 a Figura 5.17 mostra que, tanto sem considerar os fatores de modelagem quanto considerando, os valores dos índices de confiabilidade  $\beta_3$  diminuem com o aumento de  $f_{ck}$ . Quando os fatores de modelagem não são considerados e são utilizadas na função de estado as equações do Bulletin 14 *fib* (2001) o valor de  $\beta_4$  é maior do que  $\beta_r = 3,8$  e aumenta com o aumento de  $f_{ck}$ . A partir de  $f_{ck} = 25 MPa$  o valor do índice de confiabilidade  $\beta_3$  passa a ser menor do que o valor de  $\beta_4$  e a ruptura da alma por tração diagonal devido à ruptura do reforço passa a comandar o dimensionamento. O índice de confiabilidade  $\beta_{e,série}$  assume valor igual a  $\beta_r = 3,8$ . Quando os fatores de modelagem são considerados,  $\beta_4$  tem valor constante igual a  $\beta_r = 3,8$  e obtém-se  $\beta_{e,série} = \beta_4$ . O modo de falha dominante é ruptura da alma por tração diagonal devido ao descolamento do reforço.

A partir da Figura 5.18 pode-se verificar melhor os valores de  $\beta_3$  e  $\beta_4$  quando as equações do Bulletin 14 *fib* (2001) são utilizadas nas funções de estado.



Figura 5.18 – Gráfico resistência característica do concreto à compressão x índices de confiabilidade ( $\beta_3$  – *fib* e  $\beta_4$  – *fib*), do sexto exemplo para o tecido <u>Wabo®MBrace CF-530</u>.